Full Text

Turn on search term navigation

© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The implementation of stringent emission regulations has resulted in the decline of anthropogenic pollutants including sulfur dioxide (SO2), nitrogen oxides (NOx), and carbon monoxide (CO). In contrast, ammonia (NH3) emissions are largely unregulated, with emissions projected to increase in the future. We present real-time aerosol and gas measurements from a field study conducted in an agriculturally intensive region in the southeastern US during the fall of 2016 to investigate how NH3 affects particle acidity and secondary organic aerosol (SOA) formation via the gas–particle partitioning of semi-volatile organic acids. Particle water and pH were determined using the ISORROPIA II thermodynamic model and validated by comparing predicted inorganic HNO3-NO3- andNH3-NH4+ gas–particle partitioning ratios with measured values. Our results showed that despite the high NH3 concentrations (average 8.1±5.2 ppb), PM1 was highly acidic with pH values ranging from 0.9 to 3.8, and an average pH of 2.2±0.6. PM1 pH varied by approximately 1.4 units diurnally. Formic and acetic acids were the most abundant gas-phase organic acids, and oxalate was the most abundant particle-phase water-soluble organic acid anion. Measured particle-phase water-soluble organic acids were on average 6 % of the total non-refractory PM1 organic aerosol mass. The measured molar fraction of oxalic acid in the particle phase (i.e., particle-phase oxalic acid molar concentration divided by the total oxalic acid molar concentration) ranged between 47 % and 90 % for a PM1 pH of 1.2 to 3.4. The measured oxalic acid gas–particle partitioning ratios were in good agreement with their corresponding thermodynamic predictions, calculated based on oxalic acid's physicochemical properties, ambient temperature, particle water, and pH. In contrast, gas–particle partitioning ratios of formic and acetic acids were not well predicted for reasons currently unknown. For this study, higher NH3 concentrations relative to what has been measured in the region in previous studies had minor effects on PM1 organic acids and their influence on the overall organic aerosol and PM1 mass concentrations.

Details

Title
Characterization of aerosol composition, aerosol acidity, and organic acid partitioning at an agriculturally intensive rural southeastern US site
Author
Nah, Theodora 1 ; Guo, Hongyu 2   VIAFID ORCID Logo  ; Sullivan, Amy P 3 ; Chen, Yunle 2 ; Tanner, David J 2 ; Nenes, Athanasios 4   VIAFID ORCID Logo  ; Armistead, Russell 5   VIAFID ORCID Logo  ; Nga Lee Ng 6   VIAFID ORCID Logo  ; Huey, L Gregory 2   VIAFID ORCID Logo  ; Weber, Rodney J 2   VIAFID ORCID Logo 

 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA; now at: School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China 
 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA 
 Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA 
 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA; ICE-HT, Foundation for Research and Technology, Hellas, 26504 Patras, Greece; IERSD, National Observatory of Athens, P. Penteli, 15236 Athens, Greece 
 School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA 
 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA 
Pages
11471-11491
Publication year
2018
Publication date
2018
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2088864400
Copyright
© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.