It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In earlier studies, we implemented the Multiplicative Algebraic Reconstruction Technique (MART) to reconstruct two-dimensional ionospheric structures from measured TECs through the receptions of the GPS-to-LEO signals and/or the NNSS-to-ground beacon signals. To examine the accuracy of the reconstructed image we need ground-based validation systems which are difficult to obtain. However, such comparative investigation is needed if one aims to improve tomography inverse techniques and algorithms. In this study, we propose a simulation scheme to carry out this task. We first simulate the GPS-to-LEO TEC measurements through the IRI model by integrating electron densities along the "straight" ray occultation paths between the GPS and LEO satellite obtained from the real GPS/MET experiment. Contiguous tomographic images are then derived by the MART algorithm within the "reference" GPS/MET experiment. They are verified by comparison with the "true" IRI-modelled ionosphere. We show that simulation/reference results can be used to find the optimal reconstruction strategy in space-based ionospheric tomography.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer