Abstract

Background

Component-based structural equation modeling methods are now widely used in science, business, education, and other fields. This method uses unobservable variables, i.e., “latent” variables, and structural equation model relationships between observable variables. Here, we applied this structural equation modeling method to biologically structured data. To identify candidate drug-response biomarkers, we first used proteomic peptide-level data, as measured by multiple reaction monitoring mass spectrometry (MRM-MS), for liver cancer patients. MRM-MS is a highly sensitive and selective method for proteomic targeted quantitation of peptide abundances in complex biological samples.

Results

We developed a component-based drug response prediction model, having the advantage that it first combines collapsed peptide-level data into protein-level information, facilitating subsequent biological interpretation. Our model also uses an alternating least squares algorithm, to efficiently estimate both coefficients of peptides and proteins. This approach also considers correlations between variables, without constraint, by a multiple testing problem. Using estimated peptide and protein coefficients, we selected significant protein biomarkers by permutation testing, resulting in our model for predicting liver cancer response to the tyrosine kinase inhibitor sorafenib.

Conclusions

Using data from a cohort of liver cancer patients, we then “fine-tuned” our model to successfully predict drug responses, as demonstrated by a high area under the curve (AUC) score. Such drug response prediction models may eventually find clinical translation in identifying individual patients likely to respond to specific therapies.

Details

Title
Drug response prediction model using a hierarchical structural component modeling method
Author
Kim, Sungtae; Choi, Sungkyoung; Jung-Hwan, Yoon; Kim, Youngsoo; Lee, Seungyeoun; Park, Taesung
Publication year
2018
Publication date
2018
Publisher
BioMed Central
e-ISSN
14712105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2090511000
Copyright
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.