Full text

Turn on search term navigation

Copyright © 2018 Yue-Ming Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Xingnaojing (XNJ) injection, derived from traditional Chinese medicine formulation, has a protective effect against stroke, but the underlying mechanism is unclear, which severely limited its clinical application. This research aims to elucidate the role and mechanism of XNJ in reducing cerebral ischemic reperfusion (I/R) injury. Rats received 2 h cerebral ischemia followed by reperfusion of 24 h and were intraperitoneally given 5, 10, or 15 ml/kg XNJ 24 h before ischemia and at the onset of reperfusion, respectively. TTC staining, HE staining, and neurological score were implied to evaluate the effectiveness of XNJ. The protein expressions of PI3K/Akt and eNOS signaling were measured. Experiments were further performed in human brain microvascular endothelial cells (HBMECs) to investigate the protective mechanisms of XNJ. HBMECs were subjected to 3 h oxygen and glucose deprivation following 24 h of reoxygenation (OGD) to mimic cerebral I/R in vitro. PI3K inhibitor LY294002 was added with or without the preconditioning of XNJ. Multiple methods including western blot, immunofluorescence, DAPI staining, JC-1, and flow cytometry were carried out to evaluate the effect of XNJ on HBMECs. XNJ could improve rat cerebral ischemic injury and OGD induced HBMECs apoptosis. In vivo and in vitro researches indicated that the mechanism might be relevant to the activation of PI3K/Akt/eNOS signaling.

Details

Title
Xingnaojing Injection Protects against Cerebral Ischemia Reperfusion Injury via PI3K/Akt-Mediated eNOS Phosphorylation
Author
Yue-Ming, Zhang 1   VIAFID ORCID Logo  ; Xiao-Yu, Qu 1 ; Jing-Hui Zhai 1 ; Li-Na, Tao 1 ; Gao, Huan 1 ; Yan-Qing, Song 1   VIAFID ORCID Logo  ; Si-Xi, Zhang 1   VIAFID ORCID Logo 

 Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin 130021, China 
Editor
Shuang-En Chuang
Publication year
2018
Publication date
2018
Publisher
John Wiley & Sons, Inc.
ISSN
1741427X
e-ISSN
17414288
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2090558623
Copyright
Copyright © 2018 Yue-Ming Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/