Full text

Turn on search term navigation

Copyright © 2018 Feng-Gang Yan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Most popular techniques for super-resolution direction of arrival (DOA) estimation rely on an eigen-decomposition (EVD) or a singular value decomposition (SVD) computation to determine the signal/noise subspace, which is computationally expensive for real-time applications. A two-step root multiple signal classification (TS-root-MUSIC) algorithm is proposed to avoid the complex EVD/SVD computation using a uniform linear array (ULA) based on a mild assumption that the number of signals is less than half that of sensors. The ULA is divided into two subarrays, and three noise-free cross-correlation matrices are constructed using data collected by the two subarrays. A low-complexity linear operation is derived to obtain a rough noise subspace for a first-step DOA estimate. The performance is further enhanced in the second step by using the first-step result to renew the previous estimated noise subspace with a slightly increased complexity. The new technique can provide close root mean square error (RMSE) performance to root-MUSIC with reduced computational burden, which are verified by numerical simulations.

Details

Title
Two-Step Root-MUSIC for Direction of Arrival Estimation without EVD/SVD Computation
Author
Feng-Gang, Yan  VIAFID ORCID Logo  ; Liu, Shuai  VIAFID ORCID Logo  ; Wang, Jun  VIAFID ORCID Logo  ; Jin, Ming
Editor
Herve Aubert
Publication year
2018
Publication date
2018
Publisher
John Wiley & Sons, Inc.
ISSN
16875869
e-ISSN
16875877
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2090569055
Copyright
Copyright © 2018 Feng-Gang Yan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/