Abstract

Electrical synapses are formed by two unrelated gap junction protein families, the primordial innexins (invertebrates) or the connexins (vertebrates). Although molecularly different, innexin- and connexin-based electrical synapses are strikingly similar in their membrane topology. However, it remains unclear if this similarity extends also to more sophisticated functions such as long-term potentiation which is only known in connexin-based synapses. Here we show that this capacity is not unique to connexin-based synapses. Using a method that allowed us to quantitatively measure gap-junction conductance we provide the first and unequivocal evidence of long-term potentiation in an innexin-based electrical synapse. Our findings suggest that long-term potentiation is a property that has likely existed already in ancestral gap junctions. They therefore could provide a highly potent system to dissect shared molecular mechanisms of electrical synapse plasticity.

Details

Title
Long-term potentiation in an innexin-based electrical synapse
Author
Welzel, Georg 1 ; Schuster, Stefan 1 

 Department of Animal Physiology, University of Bayreuth, Bayreuth, Germany 
Pages
1-10
Publication year
2018
Publication date
Aug 2018
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2091743064
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.