It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Red meat allergy is characterized by an IgE response against the carbohydrate galactose-α-1,3-galactose (α-Gal), which is abundantly expressed on glycoproteins from non-primate mammals. The mechanisms of how α-Gal is processed and presented to the immune system to initiate an allergic reaction are still unknown. The aim of this study was to reveal whether the presence of α-Gal epitopes on the protein surface influence antigen uptake and processing in immature monocyte-derived dendritic cells (iMDDCs). Immature MDDCs were prepared from healthy blood donors and red meat allergic patients. We found an increased internalization of α-Gal carrying proteins over time in iMDDCs by flow cytometric analysis, which was independent of the donor allergic status. The uptake of α-Gal carrying proteins was significantly higher than the uptake of non-α-Gal carrying proteins. Confocal microscopy revealed α-Gal carrying proteins scattered around the cytoplasm in most iMDDCs while detection of proteins not carrying α-Gal was negligible. Fluorescent detection of protein on SDS-PAGE showed that degradation of α-Gal carrying proteins was slower than degradation of non-α-Gal carrying proteins. Thus, the presence of α-Gal on the protein surface affects both uptake and degradation of the protein, and the results add new knowledge of α-Gal as a clinically relevant food allergen.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet, and University Hospital, Stockholm, Sweden; Center of Excellence in Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
2 Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet, and University Hospital, Stockholm, Sweden
3 Department of Clinical Neuroscience, Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, Sweden
4 Department of Internal Medicine, Södersjukhuset, Stockholm, Sweden
5 Center of Excellence in Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia; Ghent University Global Campus, Yeonsu-gu, Incheon, South Korea