It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The H+, K+-ATPase (HKA) uses ATP to pump protons into the gastric lumen against a million-fold proton concentration gradient while counter-transporting K+ from the lumen. The mechanism of release of a proton into a highly acidic stomach environment, and the subsequent binding of a K+ ion necessitates a network of protonable residues and dynamically changing protonation states in the cation binding pocket dominated by five acidic amino acid residues E343, E795, E820, D824, and D942. We perform molecular dynamics simulations of spontaneous K+ binding to all possible protonation combinations of the acidic amino acids and carry out free energy calculations to determine the optimal protonation state of the luminal-open E2P state of the pump which is ready to bind luminal K+. A dynamic pKa correlation analysis reveals the likelihood of proton transfer events within the cation binding pocket. In agreement with in-vitro measurements, we find that E795 is likely to be protonated, and that E820 is at the center of the proton transfer network in the luminal-open E2P state. The acidic residues D942 and D824 are likely to remain protonated, and the proton redistribution occurs predominantly amongst the glutamate residues exposed to the lumen. The analysis also shows that a lower number of K+ ions bind at lower pH, modeled by a higher number of protons in the cation binding pocket, in agreement with the ‘transport stoichiometry variation’ hypothesis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark; MEMPHYS-Center for Biomembrane Physics, Odense, Denmark
2 Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
3 Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
4 Cellular and Structural Physiology Institute and Department of Medicinal Science, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan