It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this manuscript, weld pool dynamics in laser welding of various series of aluminum alloys were investigated by the in situ X-ray phase contrast imaging system. The experimental results showed that metal irradiated by laser was evaporated immediately, which generated the keyhole. Then metal surrounding the keyhole was melted gradually with the heat from keyhole. The growth rate of keyhole depth had a positive linear correlation with the total content of low boiling temperature elements (TCE), so did the keyhole depth and diameter at the stable stage. Longitudinal view area of the molten pool had a negative linear correlation with the thermal conductivity of aluminum alloy. The measured laser absorption rate had the same variation trend with the ratio of keyhole depth to diameter, and the highest absorption rate of 58% appeared in laser welding of aluminum alloy with TCE equal to 2.1%. Violent fluctuation in keyhole shape was avoided in aluminum alloy with TCE lower than 2.1%, where the surface tension and recoil pressure of metal vapor were balanced. To sum up, the effect of alloy element on weld pool dynamics in laser welding of aluminum alloys was firstly quantified in this manuscript.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Research & Development Group, Hitachi, Ltd., 7-1-1 Omika, Hitachi, Ibaraki, Japan
2 Osaka University, JWRI, Osaka, Japan
3 Mie University, Graduate School of Engineering, Tsu, Mie, Japan
4 Japan Atomic Energy Agency, Sector of Nuclear Science Research Materials Sciences Research Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, Japan