It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this paper, state-dependent Riccati equation (SDRE) method-based optimal control technique is applied to a robot. In recent years, issues associated with the robotics have become one of the developing fields of research. Accordingly, intelligent robots have been embraced greatly; however, control and navigation of those robots are not easy tasks as collision avoidance of stationary obstacles to doing a safe routing has to be taken care of. A moving robot in a certain time has to reach the specified goals. The robot in each time step needs to identify criteria such as velocity, safety, environment, and distance in respect to defined goals and then calculate the proper control strategy. Moreover, getting information associated with the environment to avoid obstacles, do the optimal routing, and identify the environment is necessary. The robot must intelligently perceive and act using adequate algorithms to manage required control and navigation issues. In this paper, smart navigation of a mobile robot in an environment with certain stationary obstacles (known to the robot) and optimal routing through Riccati equation depending on SDRE is considered. This approach enables the robot to do the optimal path planning in static environments. In the end, the answer SDRE controller with the answer linear quadratic controller will be compared. The results show that the proposed SDRE strategy leads to an efficient control law by which the robot avoids obstacles and moves from an arbitrary initial point × 0 to a target point. The robust performance of SDRE method for a robot to avoid obstacles and reach the target is demonstrated via simulations and experiments. Simulations are done using MATLAB software.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Electrical and Computer Engineering, Shiraz University Of Technology, Shiraz, Iran
2 School of Computing Science and Engineering, Vellore Institute of Technology (VIT), Vellore, India
3 School of Computer and Communication Engineering, Changsha University of Science & Technology, Changsha, China
4 Business Administration Research Institute, Sungshin Women’s University, Seoul, Republic of Korea