It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Raman spectral features from spinal cord tissue sections of transgenic, ALS model mice and non-transgenic mice were compared using 457 nm excitation line, profiting from the favourable signal intensity obtained in the molecular fingerprint region at this wavelength. Transverse sections from four SOD1G93A mice at 75 days and from two at 90 days after birth were analysed and compared with sections of similarly aged control mice. The spectra acquired within the grey matter of tissue sections from the diseased mice is markedly different from the grey matter signature of healthy mice. In particular, we observe an intensity increase in the spectral windows 450–650 cm−1 and 1050–1200 cm−1, accompanied by an intensity decrease in the lipid contributions at ~1660 cm−1, ~1440 cm−1 and ~1300 cm−1. Axons demyelination, loss of lipid structural order and the proliferation and aggregation of branched proteoglycans are related to the observed spectral modifications. Furthermore, the grey and white matter components of the spinal cord sections could also be spectrally distinguished, based on the relative intensity of characteristic lipid and protein bands. Raman spectra acquired from the white matter regions of the SOD1G93A mice closely resembles those from control mice.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
; Spalloni, Alida 2 ; Generosi, Amanda 1 ; Paci, Barbara 1 ; Nicola Biagio Mercuri 3
; Luce, Marco 1 ; Longone, Patrizia 2 ; Cricenti, Antonio 1 1 CNR Istituto Struttura della Materia, Rome, Italy
2 Laboratorio di Neurobiologia Molecolare, Fondazione Santa Lucia IRCCS, Rome, Italy
3 Department of Systems Medicine, Neurology UOC, University of Rome “Tor Vergata”, Fondazione PTV, Policlinico“Tor Vergata”, Rome, Italy; Department of Experimental Neuroscience, Fondazione Santa Lucia IRCCS, Rome, Italy




