大气中温室气体不断增加是气候变暖及相关环境问题的重要根源。N2O是一种重要的温室气体,在大气中的浓度比工业化前升高20%[1],农业生产中N2O排放占总排放量的84%[2]。由氮肥驱动的N2O排放占土壤总N2O排放量的25%~82%[3]。
我国农田作物当季氮肥利用率只有30%左右,不被利用的氮素会对周边土壤、水体和气体产生较大负面影响[4]。华北平原粮食总产量占全国1/7,是我国主要粮食产区[5]。为获高产,农民向农田投入大量氮肥,小麦季高产区农民平均施纯氮为250.5 kg·hm-2,最大可达301.5 kg·hm-2 [6, 7];一般玉米季施氮量为220~270 kg·hm-2,高产区平均纯氮用量500~600 kg·hm-2,远超过作物的氮素需求。该地区N2O累积排放量为2.4~7.1 kg·hm-2,最高可达12.6 kg·hm-2 [8, 9]。针对农田N2O减排的研究主要集中在氮肥用量和种类、耕作措施以及长效肥料、氮素控制剂等方面。众多学者指出,华北地区小麦/玉米轮作中氮肥施用量降至150~200 kg·hm-2,既能保证作物产量又可减少环境污染[10, 11, 12]。胡小康等[13]研究表明,随氮肥用量增加,土壤N2O排放呈直线或曲线增加。氮素调控剂(DCD)[14]、氮肥包膜[15]、纳米增效尿素[16]等均在促进氮肥利用的同时降低了环境污染风险。
目前,针对华北粮田N2O排放虽进行了大量研究,但大部分是特定区域单一试验结果,缺乏系统性。因此,本文通过查阅大量已发表文献,对华北小麦和玉米田不同氮肥用量、氮肥基追比例以及氮素调控剂等对土壤排放N2O和作物产量的影响进行综合分析,试图明确粮田系统较合理的减排N2O和增产作物模式,为华北地区农业安全生产提供科学依据。
1 材料与方法
本文以冬小麦、夏玉米为研究对象,集中在氮肥施用量、氮肥基追比以及氮素调控剂使用方面,查阅和综合分析近期公开发表的国内外期刊和硕博士学位论文。不同文献中的相同指标均换算为统一单位,其中计算N2O减排与作物增产均以各自试验的不施氮肥处理为对照进行核算。采用MATLAB软件进行各指标相关性逐步回归分析。各指标计算公式为:
N2O排放量增加率(%)=(施氮处理N2O排放量-不施氮处理N2O排放量)/不施氮处理N2O排放量×100
作物增产率(%)=(施氮处理作物产量-不施氮处理作物产量)/不施氮处理作物产量×100
单位氮肥N2O排放量(g·kg-1)=施氮处理N2O排放量/纯氮施用量
单位产量N2O排放量(mg·kg-1)=N2O排放量/作物产量
2 结果与分析
2.1 麦田土壤N2O排放及小麦产量
2.1.1 不同氮肥施用量和基追比对土壤N2O排放及小麦产量的影响
收集华北区麦田10个实验42组数据,利用MATLAB软件统计建模,分别以N2O排放总量和产量为因变量,纯氮用量、N2O增排率、单位氮肥N2O排放量、单位产量N2O排放量和增产率为自变量进行逐步回归分析。N2O排放总量为因变量时(图 1),根据残差图逐步去除异常值后保留20组有效数据,拟合出最佳回归方程为Y=0.001 53-2.77e-6 X1-1.83e-5 X2+0.002 16X3+0.006 22X4(r=0.999**),最优拟合下施氮量167 kg·hm-2时的土壤N2O平均排放量为0.31 kg·hm-2,且纯氮用量、N2O增排率、单位氮肥N2O排放量和单位产量N2O排放均会显著影响麦田N2O的总排放量。当产量为因变量时(图 2),根据残差图逐步去除异常值后保留31组有效数据,拟合出最佳回归方程为Y=6 230.89-0.064 3X1+53.127X2-1.054 X3(r=0.757**)。最优拟合下施氮量174 kg·hm-2时的小麦平均产量6 258 kg·hm-2。综合施氮肥土壤减排N2O和小麦增产,以施氮量167~174 kg·hm-2即可保证增产较大,又排放N2O较少。
图 1 麦田N2O总排放量逐步回归分析Figure 1 Stepwise regression analysis of soil N2O total emissions in wheat field
根据图 1和图 2逐步回归分析确定的小麦较优施氮量范围167~174 kg·hm-2,在施氮量150~225 kg·hm-2 范围内。根据文献报道(表 1),施氮量150~225 kg·hm-2时的N2O增排率为20.5%~176.9%,其中2:3和4:3:3的基追比增排率较大,而1:0和1:1的基追比增排率较小;1:1氮肥基追比的单位氮肥和单位产量N2O排放量均小于其他处理,1:1和2:3的小麦增产率均比1:0大。因此,麦田基追比例1:1减排N2O又有利于增产。
表 1 不同氮素基追比对麦田土壤N2O排放和小麦产量的影响 Table 1 Effects of different nitrogen ratios of basal to top dressing on soil N2O emissions and wheat yield
2.1.2 氮素调控剂对麦田土壤N2O排放及小麦产量的影响
由表 2可知,施氮量100 kg·hm-2时,包膜比未包膜处理的土壤N2O增排率减少50个百分点,作物增产率高6个百分点;施氮量150 kg·hm-2时,与等量无机氮肥比,添加DCD增排N2O 5.1个百分点,包膜处理无变化,添加DCD比包膜处理单位产量N2O排放量减少0.7 mg·kg-1,小麦增产率高8.1个百分点。施氮量180 kg·hm-2进行氮素调控比225 kg·hm-2氮肥的N2O减排增产效果明显,添加纳米碳比DCD增排28.0个百分点,单位氮肥N2O排放量增加0.9 g·kg-1,单位产量N2O排放量增加17.2 mg·kg-1,小麦增产率低0.7个百分点,说明添加DCD减排增产效果好。施氮量200 kg·hm-2时,包膜比添加DCD土壤N2O增排率增加40.2个百分点,单位氮肥N2O排放量增加0.5 g·kg-1,单位产量N2O排放量增加35.2 mg·kg-1,小麦增产率低8.6个百分点,说明添加DCD较包膜有利于稳产减排。施氮量225 kg·hm-2时,添加DCD比等量氮肥减排N2O 93个百分点且增产率高46.3个百分点。施氮量300 kg·hm-2添加DCD比等量无机氮肥N2O排放下降90.7个百分点,小麦增产率高30.7个百分点,较270 kg·hm-2的包膜处理减排N2O 139.6个百分点且小麦增产率高73.6个百分点,说明DCD能抑制高氮水平下麦田N2O的排放。因此,不同施氮水平下添加DCD均比包膜肥料减排增产效果明显。
表 2 氮素调控剂对麦田土壤N2O排放及小麦产量的影响 Table 2 Effects of different nitrification inhibitors on soil N2O emissions and wheat yield
2.2 玉米田土壤N2O排放及玉米产量
2.2.1 不同施氮量和基追比对土壤N2O排放及玉米产量的影响
玉米田利用MATLAB软件建模,分别以N2O排放总量和产量为因变量,纯氮用量、N2O增排率、单位氮肥N2O排放量、单位产量N2O排放量和增产率为自变量进行逐步回归分析。N2O排放总量为因变量时(图 3),根据残差图逐步去除异常值后保留29组有效数据,拟合出最佳回归方程为Y=-0.001 56+0.001 26X1+0.021 1X2+0.006 67X3(r=0.998**),最优拟合下施氮量181 kg·hm-2时的土壤N2O平均排放量1.70 kg·hm-2,且纯氮用量、单位氮肥N2O排放和单位产量N2O排放均会显著影响土壤N2O的总排放量;当产量为因变量时(图 4),根据残差图逐步去除异常值后保留36组有效数据,拟合出最佳回归方程为Y=8 576.58+7.545X1+54.031X2-6.088X3(r=0.813**),最优拟合下施氮量177 kg·hm-2时玉米平均产量为9 046 kg·hm-2。综合施氮肥减排N2O和玉米增产,以施氮量177~181 kg· hm-2即可保证增产较大,又排放N2O较少。
图 3 玉米田N2O总排放量逐步回归分析Figure 3 Stepwise regression analysis of soil N2O total emissions in maize yield
根据图 3和图 4逐步回归分析确定的较优玉米施氮量范围177~181 kg·hm-2,在施氮量150~260 kg·hm-2范围内。根据文献报道(表 3),施氮量150~180 kg·hm-2时,基追比2:3比1:0和1:1的单位氮肥N2O排放量增加8.4~13.1 g·kg-1,单位产量N2O排放量增加220.5~270.6 mg·kg-1,无减排增产趋势。施氮量225 kg·hm-2且基追比2:3明显比一次性基施氮肥减少N2O总排放量和单位氮肥N2O排放量,作物可增产38.6%;同等试验中基追比2:3比1:0减排N2O 22.3个百分点,增产3.2个百分点。与施氮240 kg·hm-2基追比1:1比,施氮量210 kg·hm-2和263 kg·hm-2基追比1:2的土壤N2O增排率分别下降530.2、513.1个百分点,单位氮肥和单位产量N2O排放量相近,增产率提高11.4、14.5个百分点,单位氮肥和单位产量N2O排放量相近,增产率提高11.4、14.5个百分点,说明基追比1:2有利于中氮区玉米稳产减排。因此,玉米田氮肥基追比例为2:3~1:2可稳产减排。
表 3 不同氮素基追比对玉米田土壤N2O排放和玉米产量的影响 Table 3 Effects of different nitrogen ratios of basal to top dressing on soil N2O emissions and maize yield
2.2.2 氮素调控剂对土壤N2O排放及玉米产量的影响
笔者收集了玉米田研究最多的氮素调控措施(包膜控释肥料、纳米增效尿素/碳铵和DCD)(表 4)。在纯氮量160 kg·hm-2时,添加DCD N2O增排率降低62.5个百分点且增产率上升7.3个百分点。施氮量180 kg·hm-2时的单位氮肥和单位产量N2O排放量均表现为硫包膜>180+5%DCD>纳米增效尿素>纳米增效碳铵>180+10%DCD,几种调控剂间增产(相差最大25.1个百分点)不及N2O增排(相差最小73个百分点)幅度大,说明该施氮量下添加10%DCD 综合效果较好。施氮量210 kg·hm-2时,包膜处理的N2O增排率比添加DCD 处理高25.9个百分点,单位氮肥N2O排放量增加0.7 g·kg-1,单位产量N2O排放量增加15.8mg·kg-1,增产率下降3.2个百分点;施氮225 kg·hm-2添加DCD 比等量无机氮肥降低N2O增排率111.8个百分点,包膜却增排N2O39.5个百分点,单位氮肥和单位产量N2O排放量均有DCD 减排而包膜处理增排的趋势,玉米增产率DCD 和包膜处理的分别提高47.7、10.5个百分点,说明氮量210 kg·hm-2和225kg·hm-2时,添加DCD 无论减排还是增产均比包膜肥料效果明显。因此,玉米田添加DCD 比其他氮素调控措施增产减排潜力大。
表 4 氮素调控剂对土壤N2O排放及玉米产量的影响 Table 4 Effects of different nitrification inhibitors on soil N2O emissions and maize yield
3 讨论
华北地区小麦和玉米生产中普遍存在氮肥用量高、利用率低、作物养分需求与土壤、肥料养分供应不同步等问题。本文旨在寻找该区合适的施氮水平,提高氮肥利用率,缓解N2O排放。吉艳芝等[17]报道,河北小麦高产且N2O排放量较少的施氮量为150 kg·hm-2。宋利娜等[37]指出,施氮量210 kg·hm-2为华北区小麦优化管理模式,土壤N2O总排放量1.19 kg·hm-2,籽粒产量6 140 kg·hm-2。王艳群等[18]研究表明,225 kg·hm-2的氮素水平下,小麦产量6 258 kg·hm-2,土壤排放N2O1.06 kg·hm-2。本文通过汇总文献资料并进行逐步回归分析,确定小麦最优施氮量为167~174 kg·hm-2,N2O排放0.31 kg·hm-2,产量在6 200 kg·hm-2以上,在稳产下比上述研究更能减排N2O,精确了麦田最佳施氮量范围。刘亚男[24]研究表明,玉米季施氮量392 kg·hm-2时,产量最高为9 461 kg·hm-2,土壤排放N2O3.31 kg·hm-2。蔡祖聪等[38]研究表明,华北潮土上施氮量150 kg·hm-2的玉米产量和环境效应最好,籽粒产量7 633 kg·hm-2且多年产量变异较小。本文拟合玉米最优施氮量为177~181 kg·hm-2,尽管施肥量稍高于蔡祖聪等研究结果,但研究样点涉及区域广,土壤类型多,籽粒产量也在9 000 kg·hm-2以上,增产明显。与茹淑华等[39]在该区6 年定位试验获得的最佳施肥量与产量结果比较接近,但本研究施氮量区间结合N2O减排,概括性更强,范围更集中,便于生产中应用。
该区小麦种植建议选用基追比例为1:1,而玉米季则建议基追比为2:3~1:2,这与该地区的灌溉和降水相关。水分是影响N2O产生和排放的一个重要因素,同时影响养分转化和移动。玉米季雨热同期,利于N2O排放,高水分条件下土壤N2O排放量大于正常水分[40]。玉米生长前期吸收土壤氮素少[41],在水分较好时作物对氮肥依赖性小,增加了氮的移动性;而后期玉米生长旺盛,根系吸收土壤氮素能力增强,不增加后期N2O排放[42]。玉米季将基追比例调至2:3~1:2 既能保证产量又能减排N2O。小麦季,低温和持续干燥的冬季会降低土壤微生物和硝化反硝化细菌的活动,比玉米季受水分影响小,基追比例为1:1 时没有增排N2O。王蔚华等[43]指出,基追比8:2 时,由于前期施肥比例占一生的80%,导致后期缺肥,影响小麦产量;但基追比调整为2:8 时,光合功能不强导致粒重低,只有基追比1:1增加粒重提高产量。因此,基追比1:1 是减少氮肥总量投入、实现氮肥养分资源高效管理的有效途径。
合理氮素调控措施在减少氮肥用量的同时可增产减排N2O。研究发现在华北小麦玉米种植区添加DCD可使小麦季N2O排放量下降49%[44],小麦/玉米轮作季降低23.1%~31.1%,小麦增产16.7%~24.6%,玉米增产29.8%~34.5%[16, 18],极少发现减产[45]。本文综合分析华北区小麦/玉米粮田增施DCD有利于减排增产,这可能是由于DCD 和尿素混合施入土壤后,能通过抑制氨氧化菌或者相关酶的活性,有效延缓NH+4 -N 氧化为NO3--N的进程,使土壤中的NH4+-N保持较高水平,延长氮肥肥效,从而减少N2O的排放,提高作物产量[46]。
4 结论
通过逐步回归分析汇总文献资料,兼顾小麦/玉米田N2O减排和2 种作物产量,在氮肥管理中,小麦季推荐合理施氮量167~174 kg·hm-2,N2O总排放量降至0.31 kg·hm-2,产量6 200 kg·hm-2以上;玉米季,推荐合理施氮量177~181 kg·hm-2,N2O总排放量降至1.70 kg·hm-2,产量9 000 kg·hm-2以上。同时,在该区氮肥合理用量基础上添加DCD 调控均能显著降低小麦和玉米田N2O排放,且调整基追比也是降低N2O排放的有效途径,但两季作物比例不同,小麦季基追比例1:1 效果较好,玉米季将基追比例调至2:3~1:2可增产减排。
[1] IPCC. Working groupⅠcontribution to the IPCC fifth assessment report:Climate Change 2013:The physical science basis[M]. Cambridge:Cambridge University Press, 2013.
[2] 王孟雪, 张忠学. 适宜节水灌溉模式抑制寒地稻田N2O排放增加水稻产量[J]. 农业工程学报, 2015, 31(15):72-79. WANG Meng-xue, ZHANG Zhong-xue. Optimal water-saving irrigation mode reducing N2O emission from rice paddy field in cold region and increasing rice yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15):72-79. (in Chinese)
[3] Eichner M J. Nitrous oxide emissions from fertilized soils:Summary of available data[J]. Journal of Environmental Quality, 1990, 19:272-280.
[4] 李鑫, 巨晓棠, 张丽娟, 等. 不同施肥方式对土壤氨挥发和氧化亚氮排放的影响[J]. 应用生态学报, 2008, 19(1):99-104. LI Xin, JU Xiao-tang, ZHANG Li-juan, et al. Effect of different fertilization modes on soil ammonia volatilization and nitrous oxide emission[J]. Chinese Journal of Applied Ecology, 2008, 19(1):99-104. (in Chinese)
[5] 孙艳丽, 陆佩玲, 李俊, 等. 华北平原冬小麦/夏玉米轮作田土壤N2O通量特征及影响因素[J]. 中国农业气象, 2008, 29(1):1-5. SUN Yan-li, LU Pei-ling, LI Jun, et al. Characteristics of soil N2O flux in a winter wheat-summer maize rotation system in north China plain and analysis of influencing factors[J]. Chinese Journal of Agrometeorology, 2008, 29(1):1-5. (in Chinese)
[6] 杨军芳, 周晓芬, 贾良良. 河北省太行山前平原小麦养分资源管理现状分析与评价[J]. 河北农业科学, 2012, 16(7):51-56. YANG Jun-fang, ZHOU Xiao-fen, JIA Liang-liang. Analysis and evaluation of the wheat nutrient resource management in the piedmont plain of Taihang mountains of Hebei province[J]. Journal of Hebei Agricultural Sciences, 2012, 16(7):51-56. (in Chinese)
[7] 崔振岭. 华北平原冬小麦-夏玉米轮作体系优化氮肥管理——从田块到区域尺度[D]. 北京:中国农业大学, 2005. CUI Zhen-ling. Optimization of the nitrogen fertilizer management for winter wheat-summer maize rotation system in the north China plain:from field to regional scale[D]. Beijing:China Agricultural University, 2005. (in Chinese)
[8] 裴淑玮, 张圆圆, 刘俊锋, 等. 华北平原玉米-小麦轮作农田N2O交换通量的研究[J]. 环境科学, 2012, 33(10):3641-3646. PEI Shu-wei, ZHANG Yuan-yuan, LIU Jun-feng, et al. N2O exchange fluxes from wheat-maize crop rotation system in the north China plain[J]. Environmental Science, 2012, 33(10):3641-3646. (in Chinese)
[9] Ding W X, Cai Y, Cai Z C, et al. Nitrous oxide emissions from an intensively cultivated maize-wheat rotation soil in the North China plain[J]. Science of the Total Environment, 2007, 373(2-3):501-511.
[10] Chen X P, Cui Z L, Vitousek P M, et al. Integrated soil-crop system management for food security[J]. Proceeding of the National Academy of Sciences, 2011, 108(16):6399-6404.
[11] Cui Z L, Chen X P, Miao Y X, et al. On-farm evaluation of the improved soil N-based nitrogen management for summer maize in North China plain[J]. Agronomy Journal, 2008, 100(3):517-525.
[12] Ju X T, Xing G X, Chen X P, et al. Reducing environment risk by improving N management in intensive Chinese agricultural systems[J]. Proceeding of the National Academy of Sciences, 2009, 106(9):3041-3046.
[13] 胡小康, 黄彬香, 苏芳, 等. 氮肥管理对夏玉米土壤CH4和N2O排放的影响[J]. 中国科学(化学), 2011, 41(1):117-128. HU Xiao-kang, HUANG Bin-xiang, SU Fang, et al. Effects of nitrogen management on methane and nitrous oxide emissions from summer maize soil in North China plain[J]. Scientia Sinica Chimica, 2011, 41(1):117-128. (in Chinese)
[14] 闫湘, 金继运, 何萍. 提高肥料利用率技术研究进展[J]. 中国农业科学, 2008, 41(2):450-459. YAN Xiang, JIN Ji-yun, HE Ping. Recent advances in technology of increasing fertilizer use efficiency[J]. Scientia Agricultura Sinica, 2008, 41(2):450-459. (in Chinese)
[15] 纪洋, 刘刚, 马静, 等. 控释肥施用对小麦生长期N2O排放的影响[J]. 土壤学报, 2012, 49(3):527-534. JI Yang, LIU Gang, MA Jing, et al. Effect of controlled-release fertilizer on nitrous oxide emission during the wheat growing period[J]. Acta Pedologica Sinica, 2012, 49(3):527-534. (in Chinese)
[16] LIU Y N, LI Y C, PENG Z P, et al. Effects of different nitrogen fertilizer management practices on wheat yields and N2O emissions from wheat fields in North China[J]. Journal of Integrative Agriculture, 2015, 14(6):1184-1191.
[17] 吉艳芝, 巨晓棠, 刘新宇, 等. 不同施氮量对冬小麦田氮去向和气态损失的影响[J]. 水土保持学报, 2010, 24(3):113-119. JI Yan-zhi, JU Xiao-tang, LIU Xin-yu, et al. Impact of different nitrogen application on nitrogen movement and gaseous loss of winter wheat fields[J]. Journal of Soil and Water Conservation, 2010, 24(3):113-119. (in Chinese)
[18] 王艳群, 李迎春, 彭正萍, 等. 氮素配施双氰胺对冬小麦-夏玉米轮作系统N2O排放的影响及效益分析[J]. 应用生态学报, 2015, 26(7):1999-2006. WANG Yan-qun, LI Ying-chun, PENG Zheng-ping, et al. Effects of dicyandiamide combined with nitrogen fertilizer on N2O emission and economic benefit in winter wheat and summer maize rotation system[J]. Chinese Journal of Applied Ecology, 2015, 26(7):1999-2006. (in Chinese)
[19] 胡腾. 黄土高原南部冬小麦-夏休闲种植体系温室气体排放与减排措施研究[D]. 杨凌:西北农林科技大学, 2014. HU Teng. Study on GHG emission and mitigation in winter-summer fallow region of south loess plateau[D]. Yangling:Northwest Agriculture and Forestry University, 2014. (in Chinese)
[20] Liu C, Wang K, Zheng X. Responses of N2O and CH4 fluxes to fertilizer nitrogen addition rates in an irrigated wheat-maize cropping system in Northern China[J]. Biogeosciences, 2012, 9(2):839-850.
[21] 王秀斌. 优化施氮下冬小麦/夏玉米轮作农田氮素循环与平衡研究[D]. 北京:中国农业科学院, 2009. WANG Xiu-bin. Nitrogen cycling and balance in winter wheat-summer corn rotation system under optimized nitrogen management[D]. Beijing:Chinese Academy of Agricultural Sciences, 2009. (in Chinese)
[22] 王朝东. 硝化抑制剂DCD与不同施氮量对粮田系统氮素分布及N2O排放的影响[D]. 保定:河北农业大学, 2013. WANG Chao-dong. Effects of dicyandiamile and different fertilizer levels on nitrogen distribution and N2O emissions in grain system[D]. Baoding:Agriculture of University of Hebei, 2013. (in Chinese)
[23] 山楠. 京郊小麦-玉米轮作体系氮素利用与损失研究[D]. 保定:河北农业大学, 2014. SHAN Nan. Nitrogen utilization and loss in winter wheat-summer maize rotation system of Beijing suburb[D]. Baoding:Agriculture of University of Hebei, 2014. (in Chinese)
[24] 刘亚男. 冬小麦/夏玉米轮作系统不同氮肥管理方式的生物效应及N2O排放特征研究[D]. 保定:河北农业大学, 2015. LIU Ya-nan. Effects of biological and N2O emissions under different nitrogen fertilizer management practices in wheat-maize rotation[D]. Baoding:Agriculture of University of Hebei, 2015. (in Chinese)
[25] 张贺, 郭李萍, 谢立勇, 等. 不同管理措施对华北平原冬小麦田土壤CO2和N2O排放的影响研究[J]. 土壤通报, 2013, 44(3):654-659. ZHANG He, GUO Li-ping, XIE Li-yong, et al. The effect of management practices on the emission of CO2 and N2O from the winter wheat field in North China plain[J]. Journal of Soil Science, 2013, 44(3):654-659. (in Chinese)
[26] 王海云, 邢光熹. 不同施氮水平对稻麦轮作农田氧化亚氮排放的影响[J]. 农业环境科学学报, 2009, 28(12):2631-2636. WANG Hai-yun, XING Guang-xi. Effect of nitrogen fertilizer rates on nitrous oxide emission from paddy field under rice-wheat rotation[J]. Journal of Agro-Environment Science, 2009, 28(12):2631-2636. (in Chinese)
[27] HU Xiao-kang, SU Fang, JU Xiao-tang, et al. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes[J]. Environmental Pollution, 2013, 176:198-207.
[28] 刘慧颖, 华利民, 张鑫. 不同施氮方式对玉米产量及N2O排放的影响[J]. 农业资源与环境学报, 2013, 30(5):76-80. LIU Hui-ying, HUA Li-min, ZHANG Xin. Effect of different N application methods on yield, N2O emission of maize[J]. Journal of Agricultural Resources and Environment, 2013, 30(5):76-80. (in Chinese)
[29] 杨黎. 辽西地区春玉米农田N2O排放特征与固碳减排机制[D]. 北京:中国农业科学院, 2013. YANG Li. Mechenism of mitigation and characteristics of N2O emissions from typical spring maize fields in western Liaoning Province[D]. Beijing:Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[30] 马银丽, 吉艳芝, 李鑫, 等. 施氮水平对小麦-玉米轮作体系氨挥发与氧化亚氮排放的影响[J]. 生态环境学报, 2012, 21(2):225-230. MA Yin-li, JI Yan-zhi, LI Xin, et al. Effects of N fertilization rates on the NH3 volatilization and N2O emissions from the wheat-maize rotation system in North China plain[J]. Ecology and Environmental Sciences, 2012, 21(2):225-230. (in Chinese)
[31] 李燕青, 唐继伟, 车升国, 等. 长期施用有机肥与化肥氮对华北夏玉米N2O和CO2排放的影响[J]. 中国农业科学, 2015, 48(21):4381-4389. LI Yan-qing, TANG Ji-wei, CHE Sheng-guo, et al. Effect of organic and inorganic fertilizer on the emission of CO2 and N2O from the summer maize field in the North China plain[J]. Scientia Agricultura Scinica, 2015, 48(21):4381-4389. (in Chinese)
[32] 刘运通. 不同施肥措施下玉米地温室气体排放特点分析与模拟研究[D]. 北京:中国农业科学院, 2008. LIU Yun-tong. Study on the characteristics of greenhouse gases flux and its simulation in maize field under different fertilization management[D]. Beijing:Chinese Academy of Agricultural Sciences, 2008. (in Chinese)
[33] 李娜. 耕作方式和包膜尿素对夏玉米田土壤N2O排放的影响[D]. 泰安:山东农业大学, 2014. LI Na. Effects of tillage practice and poly-coated urea on N2O from summer maize field[D]. Tai'an:Shandong Agricultural University, 2014. (in Chinese)
[34] 吴得峰, 姜继韶, 高兵, 等. 添加DCD对雨养区春玉米产量、氧化亚氮排放及硝态氮残留的影响[J]. 植物营养与肥料学报, 2015, 86(4):10-20. WU De-feng, JIANG Ji-shao, GAO Bing, et al. Effects of DCD addition on grain yield, N2O emission and residual nitrate-N of spring maize in rain-fed agriculture[J]. Journal of Plant Nutrition and Fertilizer, 2015, 86(4):10-20. (in Chinese)
[35] 李超. 不同施肥处理对春玉米田N2O排放的影响及经济效益分析[D]. 北京:中国农业科学院, 2013. LI Chao. Effects and economic benefits analysis of different fertilizer treatments on N2O emissions from spring corn field[D]. Beijing:Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[36] 周鹏, 李玉娥, 万运帆, 等. 华北春玉米田施用纳米增效氮肥的增产减排作用初探[J]. 中国农业气象, 2013, 34(5):532-537. ZHOU Peng, LI Yu-e, WAN Yun-fan, et al. Preliminary research on the effects of applying nano-synergism nitrogen fertilizer on nitrous oxide emission and yield of spring corn in North China plain[J]. Chinese Journal of Agrometeorology, 2013, 34(5):532-537. (in Chinese)
[37] 宋利娜, 张玉铭, 胡春胜, 等. 华北平原高产农区冬小麦农田土壤温室气体排放及其综合温室效应[J]. 中国生态农业学报, 2013, 21(3):297-307. SONG Li-na, ZHANG Yu-ming, HU Chun-sheng, et al. Comprehensive analysis of emissions and global warming effects of greenhouse gases in winter-wheat fields in the high-yield agro-region of North China plain[J]. Chinese Journal of Eco-Agriculture, 2013, 21(3):297-307. (in Chinese)
[38] 蔡祖聪, 钦绳武. 华北潮土长期试验中的作物产量、氮肥利用率及其环境效应[J]. 土壤学报, 2006, 43(6):886-890. CAI Zu-cong, QIN Sheng-wu. Corp yield, N use efficiency and environmental impact of a long-term fertilization experiment in fluvor aquic soil in North China[J]. Acta Pedologica Sinica, 2006, 43(6):886-890. (in Chinese)
[39] 茹淑华, 张国印, 孙世友, 等. 施氮量对冬小麦-夏玉米轮作体系中土壤硝态氮分布和累积的影响[J]. 华北农学报, 2011, 26:85-89. RU Shu-hua, ZHANG Guo-yin, SUN Shi-you, et al. Effect of nitrogen application rate on nitrate nitrogen distribution and accumulation in soils in wheat-maize rotation system[J]. Acta Agriculturae Boreali-Sinica, 2011, 26:85-89. (in Chinese)
[40] 侯爱新, 陈冠雄, 吴杰. 不同种类氮肥对土壤释放的N2O的影响[J]. 应用生态学报, 1998, 9(2):176-180. HOU Ai-xin, CHEN Guan-xiong, WU Jie. Effect of different nitrogen fertilizers on N2O emission from soil[J]. Chinese Journal of Applied Ecology, 1998, 9(2):176-180. (in Chinese)
[41] 戴明宏, 陶洪斌, 王利纳, 等. 华北平原春玉米季土壤硝态氮动态及氮素矿化的特征[J]. 水土保持学报, 2008, 22(3):76-81. DAI Ming-hong, TAO Hong-bin, WANG Li-na, et al. Characteristics of soil NO3--N changing and nitrogen mineralization during spring maize seasons in the North China plain[J]. Journal of Soil and Water Conservation, 2008, 22(3):76-81. (in Chinese)
[42] 杨兰芳, 蔡祖聪. 施氮和玉米生长对土壤氧化亚氮排放的影响[J]. 应用生态学报, 2005, 16(1):100-104. YANG Lan-fang, CAI Zong-cong. Effects of N application and maize growth on N2O emission from soil[J]. Chinese Journal of Applied Ecology, 2005, 16(1):100-104. (in Chinese)
[43] 王蔚华, 郭文善, 封超年, 等. 氮肥运筹对小麦花后剑叶衰老及籽粒发育的影响[J]. 扬州大学学报, 2002, 23(4):61-65. WANG Wei-hua, GUO Wen-shan, FENG Chao-nian, et al. Effects of nitrogen application methods on flag leaf senescence after anthesis and grain development in wheat[J]. Journal of Yangzhou University, 2002, 23(4):61-65. (in Chinese)
[44] Majumdar D, Pathak H, Kumar S, et al. Nitrous oxide emission from a sandy loam Inceptisol under irrigated wheat in India as influenced by different nitrification inhibitors[J]. Agriculture, Ecosystems and Environment, 2002, 91:283-293.
[45] Mahmood T, Ali R, Latif Z, et al. Dicyandiamide increases the fertilizer N loss from an alkaline calcareous soil treated with 15N-labelled urea under warm climate and under different crops[J]. Biology and Fertility of Soils, 2011, 47:619-631.
[46] Di H J, Cameron K C, Shen J P, et al. A lysimeter study of nitrate leaching from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia oxidizing bacteria and archaea[J]. Soil Use and Management, 2009, 25:454-461.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2016. This work is licensed under http://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
通过华北小麦和玉米田已发表文献分析,明确不同施氮量、氮肥基追比及氮素调控措施对土壤N2O排放和作物产量的影响。结果表明:高氮水平下减少氮肥用量并调整基追比有助于减少土壤N2O排放;添加硝化抑制剂双氰胺(DCD)对小麦和玉米产量的提高和土壤N2O的减排效果均较好。兼顾华北粮田N2O减排和作物产量,小麦季推荐合理施氮量167~174 kg·hm-2,基追比1∶1,添加DCD,土壤N2O总排放量为 0.31 kg·hm-2,籽粒产量6200 kg·hm-2以上;玉米季推荐合理施氮量177~181 kg·hm-2,基追比2∶3~1∶2,添加DCD,土壤N2O总排放量1.70 kg·hm-2,籽粒产量9000 kg·hm-2以上。
Through the published literature analysis of wheat and maize field in North China, this study investigated the effects of different management methods of nitrogen(N) application rates, basal/topdressing ratios and N control measures on the soil N2O emission and crop yield. The results showed that reducing N application rates and adjusting basal/top dressing ratios under high N level could decrease soil N2O emissions. Besides, N application with nitrification inhibitor dicyandiamide(DCD) was an effective practice for wheat/maize yield enhancement and soil N2O emission reduction. In order to reduce the soil N2O emission as well as ensure crop yield production in North China, the optimal N application rate of 167~174 kg·hm-2 at basal/top dressing ratio 1:1 with DCD was recommended for wheat production. As a result, soil N2O total emission was 0.31 kg·hm-2 and wheat grain yield reached more than 6200 kg·hm-2. For maize production, the optimal N application rate of 177~181 kg·hm-2 at basal/top dressing ratios 2:3~1:2 with DCD was regarded as the best practice. Soil N2O total emission was 1.70 kg·hm-2 and maize grain yield exceeded 9000 kg·hm-2.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer