随着农业集约化生产的快速推进和城市现代化建设,农业废弃物和城市固体废弃物积累越来越多,进而产生了较为严重的环境问题和资源浪费问题[1, 2]。我国作为世界上最大的茶叶生产国,茶饮料的生产量一直处于快速增长的状态。随着膜技术和冷冻干燥技术在速溶茶生产上的应用和日益增长的茶多酚的提取量,茶渣的产量快速增长[3, 4]。在废弃的茶渣中,仍残留有较多的营养成分。经过提取的茶渣仍残留1%~2%的茶多酚,0.1%~0.3%的咖啡碱,17%~19%的粗蛋白,16%~18%的粗纤维,氨基酸中赖氨酸和蛋氨酸的含量分别为1.5%~2%和0.5%~0.7%,氮4.16%,五氧化二磷0.43%,氧化钾1.44%,有机碳28.11%,C/N比6.19,有较高的潜在利用价值[5, 6, 7]。
利用蚯蚓处理有机废弃物是一种古老而又新生的生物技术。蚯蚓能分解有机废弃物中的物质合成生物蛋白及多种营养物质,为人类所利用,不仅具有环保价值,而且具有经济价值[8, 9, 10]。大量研究表明,使用蚯蚓粪作为育苗基质进行育苗,能够提高种子的出苗率,改善幼苗叶片叶绿素含量和净光合速率从而促进幼苗的生长发育。蚯蚓粪作为育苗基质的主要组成进行产业化开发,将取得良好的经济效益和社会效益,这对于促进我国蔬菜工厂化育苗和蔬菜生产将产生积极的影响[11, 12]。
目前传统的蚓粪来源都是以纯牛粪为原始物料经蚯蚓消化而成,当前作为育苗基质主要复配成分的蚓粪也以纯牛粪饲养蚯蚓所得的蚓粪为主。因此该试验研究开发茶渣和牛粪按体积比1:3比例复配后经蚯蚓消化而成的蚓粪(以下称茶渣蚓粪),通过穴盘育苗试验研究茶渣蚓粪复合基质对番茄幼苗生长的影响,旨在为茶渣蚓粪的资源化利用和筛选经济、高效的番茄育苗基质的蚓粪配方提供理论依据和技术指导。
1 材料与方法
1.1 试验地点与材料
试验地点设在南京市蔬菜科技园大棚内,位于南京市江宁区横溪镇,北纬31°14'~32°36',东经118°22'~119°14',属亚热带湿润气候,年平均气温15.4℃,年均降水量1 106 mm。
茶渣蚓粪:将茶渣和牛粪按体积比1:3比例复配后,转移至饲养小区(2 m×1 m)中,物料厚度约20 cm,小区四周用木板围起来,地上部木板高度50 cm。按物料质量的3‰接种蚯蚓,蚯蚓平均单重为0.19 g,每个小区约3 000条。物料湿度保持75%,温度保持在25℃左右,使物料经蚯蚓充分消化,将蚯蚓分离,茶渣蚓粪风干后过筛,备用。
泥炭、蛭石与珍珠岩分别购自辽宁清原满族自治县花肥经销处、南京生熙建材物资有限责任公司和东海县北塔蛭石厂。材料的理化性状见表 1。
表 1 育苗基质材料的理化性质 Table 1 The physical and chemical properties of substrate materials
1.2 试验方法
1.2.1 试验处理
试验设置6个处理,处理1~处理5为按照不同体积比例复配成5种茶渣蚓粪育苗基质,市场上常规育苗基质作为对照。具体处理如下:
处理1:10%茶渣蚓粪,50%泥炭,20%蛭石,20%珍珠岩。
处理2:20%茶渣蚓粪,40%泥炭,20%蛭石,20%珍珠岩。
处理3:30%茶渣蚓粪,30%泥炭,20%蛭石,20%珍珠岩。
处理4:40%茶渣蚓粪,20%泥炭,20%蛭石,20%珍珠岩。
处理5:60%茶渣蚓粪,20%蛭石,20%珍珠岩。
CK:市场上常规育苗基质。
试验采用美式黑塑72孔穴盘,每穴播1粒,每个处理3个重复。播种结束后置于大棚内,育苗周期为30 d,按常规育苗方式管理。
1.2.2 测定项目与方法
(1)基质的养分含量、容重、pH值、EC值、孔隙状况等采用常规方法测定[13]。(2)番茄幼苗生长与生理指标:待培养周期结束,测定每盘的出苗率,并且各处理每盘随机抽样15株幼苗,测定株高(以穴盘基质表面到生长点的高度为准)、茎粗(紧靠子叶节下部);鲜(干)质量用精度为1/10 000的天平称量,样品经清水洗净用吸水纸吸干后直接称质量。干质量先在通风干燥箱105℃下杀青30 min,然后在80℃下烘至恒质量后称量;幼苗根系用根系扫描(根系扫描仪型号为LA1600+,Canada;分析软件为Winrhizo2003b)测定其总根长、根体积、根表面积、根尖数[14]。
壮苗指数=(茎粗/株高+根干重/地上部干重)×全株干重
1.3 数据统计分析
采用SPSS 19.0软件进行数据分析,Excel 2007进行图形绘制。处理之间的显著差异采用单因素方差分析评价,平均值多重比较采用最小显著极差法(LSD)。
2 结果与分析
2.1 不同育苗基质配比的理化性质
作为幼苗生长的介质,基质的物理结构决定了基质的水分养分吸附性能和空气的含量,从而影响水分养分的供应、吸收甚至运输[15]。从表 2可知,各处理之间的容重较对照来说略低,但均在育苗基质适宜容重0.2~0.8 g·cm-3范围内[16]。各处理的总孔隙度均与对照差异不大,在育苗基质较适宜的65%~96%范围之内[17]。作物生长的安全EC值为小于2.6 mS·cm-1[18]。各处理EC值在0.31~1.59 mS·cm-1之间,符合安全EC值的要求。各处理pH值在5.97~6.75之间,较对照pH值稍高,但均在pH值适宜范围5.6~7.0之间[19]。各处理含氮量在11.83~20.62 g·kg-1之间,处理1~处理3含氮量比对照低,处理4和处理5均比对照要高。各处理磷含量在8.07~17.56 g·kg-1之间,均高于对照。由茶渣蚓粪复配成的各育苗基质为蔬菜育苗及生长提供良好的水、肥、气、热等环境条件,具有支持锚定蔬菜、保持水分和透气的作用[20]。
表 2 茶渣蚓粪基质的理化性质 Table 2 The physical and chemical properties of tea-leaf wormcast substrate
2.2 茶渣蚓粪基质对番茄出苗率的影响
由表 3可以看出,对照的出苗率显著低于其他处理,仅达到88%,处理2基质的出苗率最高,高达99.5%,但与其他茶渣蚓粪基质处理差异不显著。说明茶渣蚓粪基质能够明显提高番茄的出苗率。
表 3 茶渣蚓粪基质对番茄出苗率的影响(平均值±标准差,n=3) Table 3 The effects of tea-leaf wormcast substrate on the germination rate of tomato (Mean±SD,n=3)
2.3 茶渣蚓粪基质对番茄幼苗株高和茎粗的影响
从图 1可以看出,处理4的番茄幼苗的株高最高,高达22.60 cm,显著高于其他各处理,处理5次之,处理1最低,仅为13.47 cm。茶渣蚓粪基质对番茄幼苗茎粗的影响变化趋势基本与株高一致,处理4的番茄幼苗茎粗显著高于其他处理,最高可达0.35 cm,处理2效果最差,仅达0.26 cm。
图 1 茶渣蚓粪基质对番茄幼苗株高和茎粗的影响 Figure 1 The effects of tea-leaf wormcast substrate on plant height and stem diameter of tomato seedling
2.4 茶渣蚓粪基质对番茄幼苗SPAD值的影响
从图 2可以看出,处理3和处理4茶渣蚓粪基质处理下的番茄幼苗SPAD值(叶绿素相对含量)显著高于其他处理,基本呈先升高后下降趋势。说明茶渣蚓粪基质能够提高番茄幼苗叶绿素含量。
图 2 茶渣蚓粪基质对番茄幼苗SPAD值的影响 Figure 2 The effects of tea-leaf wormcast substrate on SPAD of tomato seedling
2.5 茶渣蚓粪基质对番茄幼苗生物量的影响
从表 4可以看出,以市场销售基质作对照处理的番茄幼苗地上部鲜重、干重分别为1.84、0.27 g·株-1,均低于各茶渣蚓粪基质栽培的番茄幼苗。随着基质中茶渣蚓粪含量的提高,番茄幼苗鲜、干重呈先上升后下降的趋势。其中以茶渣蚓粪含量为40%的处理4栽培的番茄幼苗地上部鲜重、干重最大,分别为3.39、0.48 g·株-1,其余依次是处理>处理>处理>处理1。不同茶渣蚓粪基质配方栽培的番茄幼苗根系鲜、干重变化趋势与地上部鲜、干重完全一致。茶渣蚓粪含量为40%的处理更有利于番茄幼苗生物量的累积。
表 4 茶渣蚓粪基质对番茄幼苗生物量的影响(g·株-1) Table 4 The effects of tea-leaf wormcast substrate on biomass of tomato seedling (g·plant-1)
2.6 茶渣蚓粪基质对番茄幼苗根系生长的影响
从表 5可以看出,不同配方的茶渣蚓粪基质栽培的番茄幼苗中,处理4的番茄幼苗根系总根长、表面积、根体积、根尖数均显著高于其他处理,分别达240.74 cm、64.67 cm2、1.15 cm3和222.33。处理1基质栽培的番茄幼苗根系的总根长、根表面积、根体积均最低,分别为128.03 cm、30.93 cm2、0.60 cm3;根尖数处理2为最低,为102.33。除处理4外,其他4个茶渣蚓粪基质处理各项根系生长指标均与对照差异性不大。随着茶渣蚓粪比例的提高,番茄幼苗根系的各项指标均呈先上升后下降的趋势。
表 5 茶渣蚓粪基质对番茄的根系生长的影响 Table 5 The effects of tea-leaf wormcast substrate on the root growth of tomato
2.7 茶渣蚓粪基质对番茄幼苗壮苗指数的影响
由图 3可知,茶渣蚓粪基质育出的番茄幼苗壮苗指数均高于对照基质处理。处理4的番茄幼壮苗指数较高,为43.74,显著高于其他各处理,但与处理5之间差异未达显著水平。对照处理的番茄幼苗壮苗指数最低,为17.74。利用适当配方的茶渣蚓粪基质可明显促进幼苗壮苗。
图 3 茶渣蚓粪基质对番茄幼苗壮苗指数的影响 Figure 3 The effects of tea-leaf wormcast substrate on seedling index of tomato seedling
3 讨论
茶渣和牛粪复配,经过蚯蚓处理后,可以减少其中难降解有机物和有害病毒细菌的威胁,使茶渣变废为宝,从而实现茶渣的资源化利用。蔬菜穴盘育苗的常用基质是泥炭、蛭石和珍珠岩,这些基质材料价格昂贵、育苗成本高,而且泥炭是一种非再生资源,长期采用会造成资源枯竭。将有机固体废弃物资源化利用,作为蔬菜育苗的有机代用基质,能够降低育苗成本[21]。目前泥炭的市场价格在300元·m-3左右,蚓粪的市场价格在500元·t-1,约合50元·m-3。利用蚓粪替代部分泥炭培育番茄,每立方米节省25~150元,且基质的养分含量大大提高。茶渣蚓粪具有很好的孔性、通气性、排水性和较高的持水能力,许多有益微生物得以生存并具有良好的吸收和保持营养物质的能力[22],具备作为蔬菜育苗基质的理化性质基础,与无机物质复配而成的基质pH值、EC值、容重和总孔隙度均符合蔬菜育苗基质的要求。
常规蚓粪含氮较低[23],而茶渣蚓粪中的茶渣含有丰富的粗蛋白、粗纤维、维生素等营养元素,经微生物和蚯蚓共同作用下可大大提高其含氮量[24]。氮素的供应显著影响幼苗的生育进程、物质积累和生理特性[25]。不同形态氮素通过影响植物内源激素的变化,引起植物生长发育的改变[26]。有研究表明,当蚓粪育苗基质中氮素含量提高,有利于辣椒、茄子等蔬菜的培育壮苗[23, 26]。一般育苗基质中所需的磷要远远高于氮和钾[27]。磷是对光合作用和碳水化合物在地上部与根系之间分配的影响起比较重要作用的元素之一,具有促进根系发育、光合速率、植株茁壮等作用[28, 29]。研究发现,蚓粪育苗能够促进作物叶绿素值,提高植株磷素积累[30]。本试验也得以验证,利用茶渣蚓粪复配不同育苗基质除了处理1~处理3的含氮量较对照来说相对较低,其余各处理氮含量均高于对照,磷含量各处理均要远远高于对照。采用茶渣蚓粪复合基质进行番茄育苗,幼苗生物量、地上部分生长、地下部分生长及壮苗指数均明显优于市场上常规基质。其中,以茶渣蚓粪含量为40%的基质下的番茄幼苗各项生理指标均为最好。番茄幼苗的株高和茎粗、叶片SPAD值、总根长、根表面积、根体积和根尖数均随茶渣蚓粪比例的提高呈先上升后下降的趋势。使用茶渣蚓粪作为育苗基质能够促进作物生长和干物质的积累,且在供试范围内蚓粪施用比例越大效果越显著。
可见,茶渣蚓粪复合基质完全可以替代价格较高的市场传统基质用于番茄作物的工厂化育苗。一方面,将茶渣进行资源化利用,减少了茶渣大量堆积带来的环境危害;另一方面,可有效降低番茄穴盘育苗成本,提高育苗质量。因此,推荐茶渣蚓粪复合基质作为番茄育苗基质,应用于番茄育苗的工厂化生产。
4 结论
采用茶渣蚓粪复合基质进行番茄育苗,出苗率、SPAD值、幼苗生物量、地上部分生长、地下部分生长及壮苗指数均明显好于市场一般销售基质。其中,茶渣蚓粪与泥炭、珍珠岩、蛭石体积比为4:2:2:2处理的番茄幼苗各项生理指标均为最好。可见,使用茶渣蚓粪代替部分泥炭作为番茄育苗基质,不仅可以提高番茄育苗的品质,还能够降低番茄育苗的成本,实现茶渣的资源化利用。
[1] 张田,卜美东,耿维.中国畜禽粪便污染现状及产沼气潜力[J].生态学杂志, 2012, 31(5):1241-1249. ZHANG Tian, BU Mei-dong, GENG Wei. Pollution status and biogas-producing potential of livestock and poultry excrements in China[J]. Chinese Journal of Ecology, 2012, 31(5):1241-1249.(in Chinese)
[2] 褚秋亭.关于我国固体废弃物回收利用的立法思考[D].青岛:中国海洋大学, 2006:14-15. CHU Qiu-ting. The speculations for the solid waste reclamation legisiation of our country[D]. Qingdao:Ocean University of China, 2006:14-15.(in Chinese)
[3] 罗红玉,黎星辉,郁军.茶渣回收利用研究现状[J].福建茶叶, 2005(7):8-12. LUO Hong-yu, LI Xing-hui, YU Jun. Recycling research status of tea-leaf[J]. Tea in Fujian, 2005(7):8-12.(in Chinese)
[4] 于明革,陈英旭.茶叶废弃物对溶液中重金属的生物吸附研究进展[J].应用生态学报, 2010, 21(2):505-513. YU Ming-ge, CHEN Ying-xu. Biosorption of heavy metals from solution by tea waste:A review[J]. Chinese Journal of Applied Ecology, 2010, 21(2):505-513.(in Chinese)
[5] Krishnapillai S. Effect of waste tea (tea fluff) on growth of young tea plants (Camellia sinensis L.)[J]. Tea Q, 1998, 50(3):98-104.
[6] 叶倩,梁月荣,陆建良,等.茶渣综合利用研究进展[J].茶叶, 2005, 31(3):150-153. YE Qian, LIANG Yue-rong, LU Jian-liang, et al. Research progress in multi-application of extracted tea residues[J]. Journal of Tea, 2005, 31(3):150-153.(in Chinese)
[7] 叶勇.茶饲料的应用及发展前景[J].中国茶叶, 2000, 22(4):14-15. YE Yong. Tea feed application and development prospect[J]. China Tea, 2000, 22(4):14-15.(in Chinese)
[8] Sun Z J. Earthworm as a potential protein resource[J]. Ecology of Food and Nutrition, 1997, 36:221-236.
[9] 王丹丹,李辉信,胡锋,等.蚯蚓处理城市生活垃圾的现状与趋势[J].江苏农业科学, 2005(4):4-8. WANG Dan-dan, LI Hui-xin, HU Feng, et al. The present situation and development trend of earthworm processing urban living garbage[J]. Jiangsu Agricultural Sciences, 2005(4):4-8.(in Chinese)
[10] 刘庄泉,杨健.蚯蚓在城市垃圾处理中的综合应用[J].贵州环保科技, 2003, 9(1):39-42, 48. LIU Zhuang-quan, YANG Jian. Earthworms comprehensive application in city garbage disposal[J]. Guizhou Environmental Protection Science and Technology, 2003, 9(1):39-42, 48.(in Chinese)
[11] 胡艳霞,孙振钧,王东辉,等.蚯蚓粪中拮抗微生物分析[J].应用与环境生物学报, 2004, 10(1):99-103. HU Yan-xia, SUN Zhen-jun, WANG Dong-hui, et al. Analysis of antagonistic microorganism in vermicompost[J]. Chin J Appl Environ Biol, 2004, 10(1):99-103.(in Chinese)
[12] 赵海涛,车玲,姜薇,等.高温处理与添加物料对蚓粪基质培育辣椒壮苗的影响[J].植物营养与肥料学报, 2014, 20(2):380-388. ZHAO Hai-tao, CHE Ling, JIANG Wei, et al. Effect of high-temperature sterilization and materials addition of vermicompost-formulated substrate on capsicum seeding development[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(2):380-388.(in Chinese)
[13] 鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社, 2000:30-165. BAO Shi-dan. Soil agro-chemistrical analysis[M]. Beijing:Chinese Agriculture Press, 2000:30-165.(in Chinese)
[14] 黄忠阳,杨巍,甘小虎,等.适用于潮汐式灌溉的番茄育苗基质的筛选研究[J].农业开发与装备, 2014, 11:68-69, 117. HUANG Zhong-yang, YANG Wei, GAN Xiao-hu, et al. The study of screening applicable substrate to the tomato seedling with Ebb-and-flow irrigation[J]. Agriculture Development and Equipments, 2014, 11:68-69, 117.(in Chinese)
[15] 张世超,陈少雄,彭彦.无土栽培基质研究概况[J].桉树科技, 2006, 23(1):49-54. ZHANG Shi-chao, CHEN Shao-xiong, PENG Yan. Review of research on the growing media of soilless culture[J]. Eucalypt Science & Technology, 2006, 23(1):49-54.(in Chinese)
[16] 李谦盛,郭世荣,李式军.利用工农业有机废弃物生产优质无土栽培基质[J].自然资源学报, 2002, 17(4):515-519. LI Qian-sheng, GUO Shi-rong, LI Shi-jun. Use of industrial and agricultural organic waste production quality soilless cultivation substrate[J]. Journal of Natural Resources, 2002, 17(4):515-519.(in Chinese)
[17] 葛晓光.蔬菜育苗大全[M].北京:中国农业出版社, 1995:5-20. GE Xiao-guang. Vegetable seedling[M]. Beijing:Chinese Agriculture Press, 1995:5-20.(in Chinese)
[18] 程斐,孙朝晖,赵玉国.芦苇末有机栽培基质的基本理化性能分析[J].南京农业大学学报, 2001, 24(3):19-22. CHENG Fei, SUN Zhao-hui, ZHAO Yu-guo. Analysis of physical and chemical properties of reed residue substrate[J]. Journal of Nanjing Agricultural University, 2001, 24(3):19-22.(in Chinese)
[19] 王清华,程鸿雁.栽培基质的选择与评价[J].山东林业科技, 2006(1):73-74. WANG Qing-hua, CHENG Hong-yan. The selection and evaluation of cultivation matrix[J]. Shangdong Forestry Sciensce and Technology, 2006(1):73-74.(in Chinese)
[20] 陈毛华,韦中,徐阳春.蚓粪配合不同堆肥对不结球白菜育苗及生长的影响[J].南京农业大学学报, 2014, 37(2):73-78. CHEN Mao-hua, WEI Zhong, XU Yang-chun. Effects of different composts mixed with wormcast on seedling and growth of non-heading Chinese cabbage[J]. Journal of Nanjing Agricultural University, 2014, 37(2):73-78.(in Chinese)
[21] 郭敬华,董灵迪,石琳琪,等.黄瓜穴盘育苗低成本无土基质筛选的研究[J].农学学报, 2012, 2(12):46-49. GUO Jing-hua, DONG Ling-di, SHI Lin-qi, et al. Studies on the selection of low-cost soilless nursery substrates for cucumber[J]. Journal of Agricultural, 2012, 2(12):46-49.(in Chinese)
[22] 赵海涛.蚓粪基质对辣椒幼苗生长的促进效应及作用机理研究[D].扬州:扬州大学, 2011:21-40. ZHAO Hai-tao. Promoting effects and mechanisms of vermicompost-formulated substrate on seedling growth of capsicum[D]. Yangzhou:Yangzhou University, 2011:21-40.(in Chinese)
[23] 尚庆茂,张志刚.蚯蚓粪基质及肥料添加量对茄子穴盘育苗影响的试验研究[J].农业工程学报, 2005, 21(增刊):129-132. SHANG Qing-mao, ZHANG Zhi-gang. Experimental studies on fertilizer-adding amount in eggplant plug seedling production with vermicompost-based media[J]. Transactions of the CSAE, 2005, 21(supplement):129-132.(in Chinese)
[24] 王晓雪,付亚文,金巨胜.蔬菜合理施肥[M].北京:中国农业出版社, 1997. WANG Xiao-xue, FU Ya-wen, JIN Ju-sheng. Vegetable fertilization[M]. Beijing:Chinese Agriculture Press, 1997.(in Chinese)
[25] 赵海涛,许光辉,单玉华,等.蚓粪复合基质不同氮素用量对茄果类蔬菜幼苗生长的影响[J].扬州大学学报(农业与生命科学版), 2010, 31(3):65-69. ZHAO Hai-tao, XU Guang-hui, SHAN Yu-hua, et al. Effects of different nitrogen application in vermicompost-formulated substrate on seedling growth of solanaceous vegetables[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2010, 31(3):65-69.(in Chinese)
[26] Gao Y P, Motosugi H, Sugiura A. Rootstock effect on growth and flowering in young apple trees grown with ammonium and nitrate nitrogen[J]. J Amer Soc Hort Sci, 1992, 117(3):446-452.
[27] 李继云,刘秀娣,周伟,等.有效利用土壤营养元素的作物育种新技术研究[J].中国科学(B辑), 1995, 25(1):41-48. LI Ji-yun, LIU Xiu-di, ZHOU Wei, et al. The research of effective use of soil nutrition elements of the new technology of crop breeding[J]. Science in Chinese (SeriesB), 1995, 25(1):41-48.(in Chinese)
[28] 孟利娟.西瓜需肥特点及高产高效施肥模型[J].河南科技, 1999(11):14-16. MENG Li-juan. Watermelon fertilizer characteristics and the models of high yield and fertilization[J]. Henan Science and Technology, 1999(11):14-16.(in Chinese)
[29] Fredeen A L, Rao I M, Terry N. Influence of phosphorus nutrition on growth and carbon partitioning in Glyci ne max[J]. Plant Physiology, 1989, 89:220-280.
[30] 李静娟,周波,张池,等.中药渣蚓粪对玉米生长及土壤肥力特性的影响[J].应用生态学报, 2013, 24(9):2651-2657. LI Jing-juan, ZHOU Bo, ZHANG Chi, et al. Effects of herb residue vermicompost on maize growth and soil fertility[J]. Chinese Journal of Applied Ecology, 2013, 24(9):2651-2657.(in Chinese)
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2015. This work is licensed under http://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
以茶渣蚓粪为原料,与泥炭、珍珠岩、蛭石按不同体积复配成育苗基质处理1 (1:5:2:2) 、处理2 (2:4:2:2) 、处理3 (3:3:2:2) 、处理4 (4:2:2:2) 、处理5 (6:0:2:2) 进行番茄育苗试验,通过分析番茄穴盘育苗植物学性状指标,探讨茶渣蚓粪基质在番茄育苗上的应用效果。结果表明:除处理1 外,其他茶渣蚓粪复合基质处理下的番茄幼苗生长指标均优于对照处理 (市场上常规育苗基质) ,其中以处理4 效果最好,处理5 次之。随着茶渣蚓粪比例的提高,番茄幼苗的株高、茎粗、SPAD值、根系形态指标呈先上升后下降的趋势。在本实验中,采用适当配方的茶渣蚓粪基质可明显提高番茄幼苗的品质,以处理4 的番茄幼苗各项指数均为最好,可推荐用于番茄的穴盘育苗生产。
The tomato seedling experiment was conducted to investigate the effect of substrate on the tomato seedling growth from five proportions of tea-leaf wormcast to peat, perlite and vermiculite, namely treatment I (1:5:2:2), treatmentⅡ (2:4:2:2), treatmentⅢ (3:3:2:2), treatment Ⅳ (4:2:2:2), treatment Ⅴ (6:0:2:2), respectively. The botany properties and characters of tomato seedling were observed to discuss the application effect of tea-leaf wormcast substrate. The results showed that in all treatments of the compound substrate of tea-leaf wormcast, except of treatment I, the tomato seedling indexes were superior to the control treatments (conventional seedling substrate in market), and the treatments Ⅳ had the best effect, followed by treatment Ⅴ. With the increasing proportion of tea-leaf wormcast, the plant height, stem diameter, SPAD value, and root morphology index of tomato seedlings firstly increased, and then decreased obviously. The substrate with the appropriate proportion of tea-leaf wormcast could obviously improve the quality of tomato seedlings, and the treatment Ⅳ was the best, which could be recommended for the actual production of tomato seedling.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer