Abstract

Ship grounding is considered as a serious maritime accident which highly contributes to environmental pollution. This impact phenomenon attracts audiences to be studied and assessed since in an instantaneous moment, oil or waste from the damaged bottom tank can spill and contaminate wide water territory. In this study, grounding scenario is modelled as hard grounding where a rock geometry is chosen as representative of oceanic obstruction. The contribution of several main parameters, such as target component and oceanic obstruction are evaluated. The method is to apply a virtual experiment by nonlinear finite element (FE) method to conduct a simulation. A chemical tanker is taken as representative of a marine structure which is subjected to impact load on its bottom structure during interaction with the obstruction. The results indicate that the space between girders provides less resistance in the crushing process. The internal energy in this work is presented to estimate the strength capability of the impacted component, which is followed by the deformation pattern on the lower part of the bottom structure. Finally, the effect of the obstruction on failure sequences in grounding is summarised.

Details

Title
Crashworthiness assessment of double-hull tanker structures under ship grounding actions
Author
Aditya Rio Prabowo; Sohn, Jung Min; Dong Myung Bae; Harsritanto, Bangun IR
Section
Transportation Engineering
Publication year
2018
Publication date
2018
Publisher
EDP Sciences
ISSN
22747214
e-ISSN
2261236X
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2098002094
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.