It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
There are few demonstrated examples of phase transitions that may be driven directly by terahertz frequency electric fields, and those that are known require field strengths exceeding 1 MV cm−1. Here we report a non-equilibrium phase transition driven by a weak (≪1 V cm−1), continuous-wave terahertz electric field. The system consists of room temperature caesium vapour under continuous optical excitation to a high-lying Rydberg state, which is resonantly coupled to a nearby level by the terahertz electric field. We use a simple model to understand the underlying physical behaviour, and we demonstrate two protocols to exploit the phase transition as a narrowband terahertz detector: the first with a fast (20 μs) non-linear response to nano-Watts of incident radiation, and the second with a linearised response and effective noise equivalent power ≤1 pW Hz−1/2. The work opens the door to a class of terahertz devices controlled with low-field intensities and operating in a room temperature environment.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Joint Quantum Centre (JQC) Durham-Newcastle, Department of Physics, Durham University, Durham, UK; Clarendon Laboratory, University of Oxford, Oxford, UK
2 School of Physics and Astronomy, University of Nottingham, Nottingham, UK; Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham, UK
3 Joint Quantum Centre (JQC) Durham-Newcastle, Department of Physics, Durham University, Durham, UK