It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Ethologically relevant stimuli are often multidimensional. In many brain systems, neurons with “pure” tuning to one stimulus dimension are found along with “conjunctive” neurons that encode several dimensions, forming an apparently redundant representation. Here we show using theoretical analysis that a mixed-dimensionality code can efficiently represent a stimulus in different behavioral regimes: encoding by conjunctive cells is more robust when the stimulus changes quickly, whereas on long timescales pure cells represent the stimulus more efficiently with fewer neurons. We tested our predictions experimentally in the bat head-direction system and found that many head-direction cells switched their tuning dynamically from pure to conjunctive representation as a function of angular velocity—confirming our theoretical prediction. More broadly, our results suggest that optimal dimensionality depends on population size and on the time available for decoding—which might explain why mixed-dimensionality representations are common in sensory, motor, and higher cognitive systems across species.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
2 Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
3 Department of Neurobiology, University of Chicago, Chicago, IL, USA; Department of Bioengineering, Imperial College, London, London, UK