Abstract
Background: In this study, we investigated the associations of erythrocytes fatty acid composition, activities of delta-5 desaturase (D5D) and delta-6 desaturase (D6D), and other metabolic risk factors, with type 2 diabetes (T2D) risk to determine if rs174583 polymorphism of FADS2 gene had any effect on these associations. Materials and Methods: Fatty acid profile of erythrocytes was determined using gas chromatography-mass spectrometry in 95 T2D patients and 95 apparently healthy participants. The genotypes of single-nucleotide polymorphism (SNP) of FADS2 gene were determined using the polymerase chain reaction-restriction fragment length polymorphism technique. Other biochemical parameters were measured in the serum using standard analytical procedures. Results: D6D activity was increased (P < 0.001) and D5D activity was decreased in T2D patients (P < 0.001) compared to controls. Homeostatic model assessment insulin resistance (HOMA-IR) index was positively correlated with D6D (r = 0.34, P < 0.001) and negatively correlated with D5D (r = −0.19, P = 0.02). Palmitic acid (P < 0.001) and dihomo-gamma-linolenic acid (P = 0.03) were higher and linoleic acid (P < 0.001) and arachidonic acid (AA) (P < 0.001) were lower in T2D patients. The distribution of rs174583 genotypes which includes C/T, C/C, and T/T was not different in the two groups (P = 0.63). Conclusion: In the population studied, there was a strong association in the erythrocytes fatty acid composition, D5D and D6D activities and other metabolic risk factors between non-T2D and T2D patients. In addition, there was a strong association in erythrocytes DGLA and AA contents and D5D activities between rs174583 genotypes in all participants. However, the distribution of rs174583 genotypes did not differ significantly between T2D patient and controls, and it did not appear to be an association between rs174583 SNP and incident of T2D.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
2 Department of Biotechnology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan