It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Low phase noise frequency synthesizers are of paramount interest in many areas of micro-mm wave technology, encompassing for example advanced wireless communication, radar, radio-astronomy, and precision instrumentation. Although this broad research field is not bereft of methods for the generation of either low phase noise micro- or mm waves, no universal system applicable to low phase noise generation for micro and mm waves has yet been demonstrated. Here we propose a new photonic frequency discriminator based on a two wavelength delayed self-heterodyne interferometer which is compatible with such an objective. The photonic frequency discriminator can be a reference both for micro and mm waves to lower their phase noise. As a proof-of-concept, we demonstrate a low phase noise tunable OEO (6–18 GHz) and locking of a heterodyne beat between two cw lasers (10–400 GHz) with low relative phase noise. The required components for the photonic frequency discriminator are off-the-shelf and can be readily assembled. We believe this new type of photonic frequency discriminator will enable a new generation of universal precision tunable sources for the X, K, V, W and mm-bands and beyond.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 IMRA America Inc., Boulder Research Labs, Longmont, CO, USA
2 IMRA America Inc., Ann Arbor, MI, USA