Abstract

This article demonstrates a multilayer polymer-silica hybrid on-chip amplifier combining mode division multiplexing method. The multilayer amplifier consists of a pumping silica waveguide and an amplifying polymer waveguide. The pumping waveguide possesses the stability and the high damage threshold. The amplifying waveguide takes the advantages of the high compatibility and the high doping rate. The vertical pump of mode division multiplexing method can introduce the pumping light into the amplifying waveguide at any desired position of the chip. By the isolation method between signal and pumping light, the pumping light can be coupled into the amplifying waveguide, while the signal light cannot be coupled into the pumping waveguide. The parameters of doping rates, waveguide lengths, overlap factors, coupling parameters are calculated to optimize the gain characteristics of the amplifier. The amplifier with three position-optimized pumping light was designed achieving a maximum gain of 33.89 dB/cm with a waveguide length of 6 cm, a signal power of 0.1 mW and a pumping power of 300 mW. This polymer-silica hybrid amplifier is promising for the on-chip loss compensation of the 3D photonic integrated circuits and all optical transistors.

Details

Title
Polymer-Silica Hybrid On-Chip Amplifier with Vertical Pumping Method
Author
Cao, Yue 1 ; Lin, Baizhu 1 ; Sun, Yue 1 ; Yi, Yunji 1 ; Liu, Yijun 1 ; Zheng, Jie 1 ; Wang, Fei 1 ; Zhang, Daming 1 

 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun, P. R. China 
Pages
1-9
Publication year
2018
Publication date
Sep 2018
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2102901980
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.