Abstract

We present a study of multiple sclerosis segmentation algorithms conducted at the international MICCAI 2016 challenge. This challenge was operated using a new open-science computing infrastructure. This allowed for the automatic and independent evaluation of a large range of algorithms in a fair and completely automatic manner. This computing infrastructure was used to evaluate thirteen methods of MS lesions segmentation, exploring a broad range of state-of-theart algorithms, against a high-quality database of 53 MS cases coming from four centers following a common definition of the acquisition protocol. Each case was annotated manually by an unprecedented number of seven different experts. Results of the challenge highlighted that automatic algorithms, including the recent machine learning methods (random forests, deep learning, …), are still trailing human expertise on both detection and delineation criteria. In addition, we demonstrate that computing a statistically robust consensus of the algorithms performs closer to human expertise on one score (segmentation) although still trailing on detection scores.

Details

Title
Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure
Author
Commowick, Olivier 1 ; Istace, Audrey 2 ; Kain, Michaël 1 ; Baptiste, Laurent 3 ; Leray, Florent 1 ; Mathieu, Simon 1 ; Sorina Camarasu Pop 4   VIAFID ORCID Logo  ; Girard, Pascal 4 ; Améli, Roxana 2 ; Ferré, Jean-Christophe 5 ; Kerbrat, Anne 6 ; Tourdias, Thomas 7 ; Cervenansky, Frédéric 4 ; Glatard, Tristan 8 ; Beaumont, Jérémy 1 ; Doyle, Senan 9 ; Forbes, Florence 10 ; Knight, Jesse 11   VIAFID ORCID Logo  ; Khademi, April 12   VIAFID ORCID Logo  ; Mahbod, Amirreza 13   VIAFID ORCID Logo  ; Wang, Chunliang 13 ; McKinley, Richard 14 ; Wagner, Franca 14 ; Muschelli, John 15   VIAFID ORCID Logo  ; Sweeney, Elizabeth 15 ; Roura, Eloy 16 ; Lladó, Xavier 16 ; Santos, Michel M 17 ; Santos, Wellington P 18 ; Silva-Filho, Abel G 17 ; Tomas-Fernandez, Xavier 19 ; Urien, Hélène 20 ; Bloch, Isabelle 20 ; Valverde, Sergi 16 ; Cabezas, Mariano 16 ; Vera-Olmos, Francisco Javier 21 ; Malpica, Norberto 21   VIAFID ORCID Logo  ; Guttmann, Charles 22 ; Vukusic, Sandra 2 ; Edan, Gilles 6 ; Dojat, Michel 23 ; Styner, Martin 24 ; Warfield, Simon K 19 ; Cotton, François 2   VIAFID ORCID Logo  ; Barillot, Christian 1 

 VISAGES: INSERM U1228 - CNRS UMR6074 - Inria, University of Rennes I, Rennes, France 
 Department of Radiology, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France 
 LaTIM, INSERM, UMR 1101, University of Brest, IBSAM, Brest, France 
 Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France 
 CHU Rennes, Department of Neuroradiology, Rennes, France; VISAGES: INSERM U1228 - CNRS UMR6074 - Inria, University of Rennes I, Rennes, France 
 CHU Rennes, Department of Neurology, Rennes, France; VISAGES: INSERM U1228 - CNRS UMR6074 - Inria, University of Rennes I, Rennes, France 
 CHU de Bordeaux, Service de Neuro-Imagerie, Bordeaux, France 
 Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada 
 Pixyl Medical, Grenoble, France 
10  Pixyl Medical, Grenoble, France; Inria Grenoble Rhône-Alpes, Grenoble, France 
11  Image Analysis in Medicine Lab, School of Engineering, University of Guelph, Guelph, Canada 
12  Image Analysis in Medicine Lab (IAMLAB), Ryerson University, Toronto, Canada 
13  School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden 
14  Department of Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland 
15  Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA 
16  Research institute of Computer Vision and Robotics (VICOROB), University of Girona, Girona, Spain 
17  Centro de Informática, Universidade Federal de Pernambuco, Pernambuco, Brazil 
18  Depto. de Eng. Biomédica, Universidade Federal de Pernambuco, Pernambuco, Brazil 
19  Computational Radiology Laboratory, Department of Radiology, Children’s Hospital, Boston, MA, USA 
20  LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France 
21  Medical Image Analysis Lab, Universidad Rey Juan Carlos, Madrid, Spain 
22  Center for Neurological Imaging, Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA 
23  Inserm U1216, University Grenoble Alpes, CHU Grenoble, GIN, Grenoble, France 
24  Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA 
Pages
1-17
Publication year
2018
Publication date
Sep 2018
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2102902610
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.