It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this study, trigonometric cubic B-spline differential quadrature method is developed for a linear transport problems constructed on the advection-di?usion equation. The weighting coe?cients used in the derivative approximations are determined by using the proposed algorithm. Following the space discretization of the advectiondi ?usion equation, the resultant ODE system is integrated in time by using Rosenbrock implicit method of order four. The accuracy and validity of the proposed method are indicated by solving some initial boundary value problems (IBVPs) representing fade out of an initial positive pulse. The error between the analytical and the numerical solutions is measured by using the discrete maximum norm.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer