It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Charge density is one of the most important parameters of triboelectric nanogenerators since it directly determines performance; unfortunately, it is largely restricted by the phenomenon of air breakdown. Here, we design a self-improving triboelectric nanogenerator with improved charge density. A maximum effective charge density of 490 μC m−2 is obtained, which is about two times higher than the highest reported charge density of a triboelectric nanogenerator that operates in an air environment. At the beginning of the working process, the charge accumulation speed is increased 5.8 times in comparison with a triboelectric nanogenerator that is incorporated into the self-improving device. The self-improving triboelectric nanogenerator overcomes the restriction of air breakdown and exhibits an increased effective charge density, which contributes to the improvement of the output performance, and the increase of charge accumulation speed will accelerate the increase of the output power at the start of operation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Zhongyuan University of Technology, Zhengzhou, Henan, China
2 Institute of Nanoscience and Nanotechnology, Lanzhou University, Gansu, China
3 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China