Abstract

Diketopiperazines can be generated by non-enzymatic cyclization of linear dipeptides at extreme temperature or pH, and the complex medium used to culture bacteria and fungi including phytone peptone and trypticase peptone, can also produce cyclic peptides by heat sterilization. As a result, it is not always clear if many diketopiperazines reported in the literature are artifacts formed by the different complex media used in microorganism growth. An ideal method for analysis of these compounds should identify whether they are either synthesized de novo from the products of primary metabolism and deliver true diketopiperazines. A simple defined medium (X. fastidiosa medium or XFM) containing a single carbon source and no preformed amino acids has emerged as a method with a particularly high potential for the grown of X. fastidiosa and to produce genuine natural products. In this work, we identified a range of diketopiperazines from X. fastidiosa 9a5c growth in XFM, using Ultra-Fast Liquid Chromatography coupled with mass spectrometry. Diketopiperazines are reported for the first time from X. fastidiosa, which is responsible for citrus variegated chlorosis. We also report here fatty acids from X. fastidiosa, which were not biologically active as diffusible signals, and the role of diketopiperazines in signal transduction still remains unknown.

Details

Title
A Simple Defined Medium for the Production of True Diketopiperazines in Xylella fastidiosa and Their Identification by Ultra-Fast Liquid Chromatography-Electrospray Ionization Ion Trap Mass Spectrometry
Author
Michelli Massaroli da Silva; Moacir dos Santos Andrade; Bauermeister, Anelize; Merfa, Marcus Vinícius; Moacir Rossi Forim; João Batista Fernandes; Vieira, Paulo Cezar; Maria Fátima das Graças Fernandes da Silva; Lopes, Norberto Peporine; Machado, Marcos Antônio; Alves de Souza, Alessandra
First page
985
Publication year
2017
Publication date
2017
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2108546630
Copyright
© 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.