It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
After volume fracturing, shale reservoirs can be divided into nonlinear seepage areas controlled by micro- or nanoporous media and Darcy seepage areas controlled by complex fracture networks. In this paper, firstly, on the basis of calculating complex fracture network permeability in a stimulated zone, the steady-state productivity model is established by comprehensively considering the multi-scale flowing states, shale gas desorption and diffusion after shale fracturing coupling flows in matrix and stimulated region. Then, according to the principle of material balance, a transient productivity calculation model is established with the succession pseudo-steady state (SPSS) method, which considers the unstable propagation of pressure waves, and the factors affecting the transient productivity of fractured wells in shale gas areas are analyzed. The numerical model simulation results verify the reliability of the transient productivity model. The results show that: (1) the productivity prediction model based on the SPSS method provides a theoretical basis for the transient productivity calculation of shale fractured horizontal well, and it has the characteristics of simple solution process, fast computation speed and good agreement with numerical simulation results; (2) the pressure wave propagates from the bottom of the well to the outer boundary of the volume fracturing zone, and then propagates from the outer boundary of the fracturing zone to the reservoir boundary; (3) with the increase of fracturing zone radius, the initial average aperture of fractures, maximum fracture length, the productivity of shale gas increases, and the increase rate gradually decreases. When the fracturing zone radius is 150 m, the daily output is approximately twice as much as that of 75 m. If the initial average aperture of fractures is 50 μm, the daily output is about half of that when the initial average aperture is 100 μm. When the maximum fracture length increases from 50 m to 100 m, the daily output only increases about by 25%. (4) When the Langmuir volume is relatively large, the daily outputs of different Langmuir volumes are almost identical, and the effect of Langmuir volume on the desorption output can almost be ignored.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer