Abstract

Background: the gamma-emitting radionuclide Technetium-99m (99mTc) is still the workhorse of Single Photon Emission Computed Tomography (SPECT) as it is used worldwide for the diagnosis of a variety of phatological conditions. 99mTc is obtained from 99Mo/99mTc generators as pertechnetate ion, which is the ubiquitous starting material for the preparation of 99mTc radiopharmaceuticals. 99Mo in such generators is currently produced in nuclear fission reactors as a by-product of 235U fission. Here we investigated an alternative route for the production of 99Mo by irradiating a natural metallic molybdenum powder using a 14-MeV accelerator-driven neutron source. Methods: after irradiation, an efficient isolation and purification of the final 99mTc-pertechnetate was carried out by means of solvent extraction. Monte Carlo simulations allowed reliable predictions of 99Mo production rates for a newly designed 14-MeV neutron source (New Sorgentina Fusion Source). Results: in traceable metrological conditions, a level of radionuclidic purity consistent with accepted pharmaceutical quality standards, was achieved. Conclusions: we showed that this source, featuring a nominal neutron emission rate of about 1015 s−1, may potentially supply an appreciable fraction of the current 99Mo global demand. This study highlights that a robust and viable solution, alternative to nuclear fission reactors, can be accomplished to secure the long-term supply of 99Mo.

Details

Title
14 MeV Neutrons for 99Mo/99mTc Production: Experiments, Simulations and Perspectives
Author
Capogni, Marco; Pietropaolo, Antonino; Quintieri, Lina; Angelone, Maurizio; Boschi, Alessandra; Capone, Mauro; Cherubini, Nadia; Pierino De Felice; Dodaro, Alessandro; Duatti, Adriano; Fazio, Aldo; Loreti, Stefano; Martini, Petra; Pagano, Guglielmo; Pasquali, Micol; Pillon, Mario; Uccelli, Licia; Pizzuto, Aldo
First page
1872
Publication year
2018
Publication date
2018
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2108579179
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.