Abstract

Underwater acoustic networks (UAN) allow for efficiently exploiting and monitoring the sub-aquatic environment. These networks are characterized by long propagation delays, error-prone channels and half-duplex communication. In this paper, we address the problem of energy-efficient communication through the use of optimized channel coding parameters. We consider a two-layer encoding scheme employing forward error correction (FEC) codes and fountain codes (FC) for UAN scenarios without feedback channels. We model and evaluate the energy consumption of different channel coding schemes for a K-distributed multipath channel. The parameters of the FEC encoding layer are optimized by selecting the optimal error correction capability and the code block size. The results show the best parameter choice as a function of the link distance and received signal-to-noise ratio.

Details

Title
Energy-Efficient Channel Coding Strategy for Underwater Acoustic Networks
Author
Barreto, Grasielli; Simão, Daniel H; Pellenz, Marcelo E; Souza, Richard D; Jamhour, Edgard; Penna, Manoel C; Glauber Brante; Chang, Bruno S
First page
728
Publication year
2017
Publication date
2017
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2108669648
Copyright
© 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.