Abstract

Over the last few decades, the development of the electronic nose (E-nose) for detection and quantification of dangerous and odorless gases, such as methane (CH4) and carbon monoxide (CO), using an array of SnO2 gas sensors has attracted considerable attention. This paper addresses sensor cross sensitivity by developing a classifier and estimator using an artificial neural network (ANN) and least squares regression (LSR), respectively. Initially, the ANN was implemented using a feedforward pattern recognition algorithm to learn the collective behavior of an array as the signature of a particular gas. In the second phase, the classified gas was quantified by minimizing the mean square error using LSR. The combined approach produced 98.7% recognition probability, with 95.5 and 94.4% estimated gas concentration accuracies for CH4 and CO, respectively. The classifier and estimator parameters were deployed in a remote microcontroller for the actualization of a wireless E-nose system.

Details

Title
Least Squares Neural Network-Based Wireless E-Nose System Using an SnO2 Sensor Array
Author
Shahid, Areej; Choi, Jong-Hyeok; Abu ul Hassan Sarwar Rana; Hyun-Seok, Kim
First page
1446
Publication year
2018
Publication date
2018
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2108721508
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.