Abstract

Indoor positioning is a recent technology that has gained interest in industry and academia thanks to the promising results of locating objects, people or robots accurately in indoor environments. One of the utilized technologies is based on algorithms that process the Received Signal Strength Indicator (RSSI) in order to infer location information without previous knowledge of the distribution of the Access Points (APs) in the area of interest. This paper presents the design and implementation of an indoor positioning mobile application, which allows users to capture and build their own RSSI maps by off-line training of a set of selected classifiers and using the models generated to obtain the current indoor location of the target device. In an early experimental and design stage, 59 classifiers were evaluated, using data from proposed indoor scenarios. Then, from the tested classifiers in the early stage, only the top-five classifiers were integrated with the proposed mobile indoor positioning, based on the accuracy obtained for the test scenarios. The proposed indoor application achieves high classification rates, above 89%, for at least 10 different locations in indoor environments, where each location has a minimum separation of 0.5 m.

Details

Title
On-Device Learning of Indoor Location for WiFi Fingerprint Approach
Author
Nuño-Maganda, Marco Aurelio; Herrera-Rivas, Hiram; Torres-Huitzil, Cesar; Marín-Castro, Heidy Marisol; Coronado-Pérez, Yuriria
First page
2202
Publication year
2018
Publication date
2018
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2108746557
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.