It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The GNSS/INS (Global Navigation Satellite System/Inertial Navigation System) navigation system has been widely discussed in recent years. Because of the unique INS-aided loop structure, the deeply coupled system performs very well in highly dynamic environments. In practice, vehicle maneuvering has a big influence on the performance of IMUs (Inertial Measurement Unit), and determining whether the selected IMUs and receiver parameters satisfy the loop dynamic requirement is still a critical problem for deeply coupled systems. Aiming at this, a new parameter self-calibration method based on the norm principle is proposed which explains the relationship between IMU precision and the velocity error of the system; the method will also provide a detailed solution to calculate the loop steady-state tracking error, so it will eventually make a judgment about the stability of the tracking loop under present system parameter settings. Lastly, a full digital simulation platform is set up, and the results of simulations show good agreement with the proposed method.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer