It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper addresses the problem of localization accuracy degradation caused by outliers of the angle of arrival (AOA). The problem of outlier detection of the AOA is converted into the detection of the estimated source position sets, which are obtained by the proposed division and greedy replacement method. The Mahalanobis distance based on robust mean and covariance matrix estimation method is then introduced to identify the outliers from the position sets. Finally, the weighted least squares method based on the reliable probabilities and distances is proposed for source localization. The simulation and experimental results show that the proposed method outperforms representative methods when unreliable AOAs are present.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer