Full Text

Turn on search term navigation

© 2018 Fay et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

CD43 is a large transmembrane protein involved in T cell activation. Previous studies of CD43-/- mice in viral models have demonstrated a role for CD43 in Th1/Th2 skewing, activation of Foxp3+ Treg, and T cell apoptosis. However, the role of CD43 during sepsis has never been tested. Thus, we interrogated the role of CD43 during sepsis using a murine cecal ligation and puncture (CLP) model, and found that CD43-/- mice demonstrated significantly worsened mortality compared to B6 mice following CLP. Phenotypic analysis of splenocytes isolated 24 h after septic insult revealed significantly increased apoptosis of central memory cells in both CD4+ and CD8+ T cell compartments in CD43-/- septic mice compared to WT septic mice. Furthermore, CD43-/-septic mice exhibited a prominent Th2 skewing following sepsis relative to WT septic mice, as evidenced by a significant decrease in the frequency of IL-2+ CXCR3+ TH1 cells as a significant increase in the frequency of IL-4+ CCR4+ TH2 cells. Finally, septic CD43-/- animals contained significantly fewer CD25+ Foxp3+ TReg cells as compared to WT septic animals. Importantly, depleting CD25+ Treg eliminated the increased mortality observed in CD43-/- mice. Taken together, these data demonstrate an important role of CD43 in modulating immune dysregulation and mortality following sepsis.

Details

Title
Increased mortality in CD43-deficient mice during sepsis
Author
Fay, Katherine T; Chihade, Deena B; Ching-Wen, Chen; Klingensmith, Nathan J; Lyons, John D; Ramonell, Kimberly; Liang, Zhe; Coopersmith, Craig M; Mandy L Ford ⨯
First page
e0202656
Section
Research Article
Publication year
2018
Publication date
Sep 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2108828188
Copyright
© 2018 Fay et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.