Abstract

Toxicity prediction is very important to public health. Among its many applications, toxicity prediction is essential to reduce the cost and labor of a drug’s preclinical and clinical trials, because a lot of drug evaluations (cellular, animal, and clinical) can be spared due to the predicted toxicity. In the era of Big Data and artificial intelligence, toxicity prediction can benefit from machine learning, which has been widely used in many fields such as natural language processing, speech recognition, image recognition, computational chemistry, and bioinformatics, with excellent performance. In this article, we review machine learning methods that have been applied to toxicity prediction, including deep learning, random forests, k-nearest neighbors, and support vector machines. We also discuss the input parameter to the machine learning algorithm, especially its shift from chemical structural description only to that combined with human transcriptome data analysis, which can greatly enhance prediction accuracy.

Details

Title
Machine Learning Based Toxicity Prediction: From Chemical Structural Description to Transcriptome Analysis
Author
Wu, Yunyi; Wang, Guanyu
First page
2358
Publication year
2018
Publication date
2018
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2108830077
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.