Abstract

Pneumonia causes the deaths of over a million people worldwide each year, with most occurring in countries with limited access to expensive but effective diagnostic methods, e.g., chest X-rays. Physical examination, the other major established method of diagnosis, suffers from several drawbacks, most notably low accuracy and high interobserver error. We sought to address this diagnostic gap by developing a proof-of-concept non-invasive device to identify the accumulation of fluid in the lungs (consolidation) characteristic of pneumonia. This device, named Tabla after the percussive instrument of the same name, utilizes the technique of auscultatory percussion; a percussive input sound is sent through the chest and recorded with a digital stethoscope for analysis. Tabla analyzes differences in sound transmission through the chest at audible frequencies as a marker for lung consolidation. This paper presents preliminary data from five pneumonia patients and eight healthy subjects. We demonstrate 92.3% accuracy in distinguishing between healthy subjects and patients with pneumonia after data analysis with a K-nearest neighbors algorithm. This prototype device is low cost and simple to implement and may offer a rapid and inexpensive method for pneumonia diagnosis appropriate for general use and in areas with limited medical infrastructure.

Details

Title
Tabla: A Proof-of-Concept Auscultatory Percussion Device for Low-Cost Pneumonia Detection
Author
Rao, Adam; Ruiz, Jorge; Chen, Bao; Roy, Shuvo
First page
2689
Publication year
2018
Publication date
2018
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2108862611
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.