It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Amyloid-beta (Aβ) has a dose-response relationship with cognition in healthy adults. Additionally, the levels of functional connectivity within and between brain networks have been associated with cognitive performance in healthy adults. Aiming to explore potential synergistic effects, we investigated the relationship of inter-network functional connectivity, Aβ burden, and memory decline among healthy individuals and individuals with preclinical, prodromal, or clinical Alzheimer’s disease.
Methods
In this longitudinal cohort study (ADNI2), participants (55–88 years) were followed for a maximum of 5 years. We included cognitively healthy participants and patients with mild cognitive impairment (with or without elevated Aβ) or Alzheimer’s disease. Associations between memory decline, Aβ burden, and connectivity between networks across the groups were investigated using linear and curvilinear mixed-effects models.
Results
We found a synergistic relationships between inter-network functional connectivity and Aβ burden on memory decline. Dose-response relationships between Aβ and memory decline varied as a function of directionality of inter-network connectivity across groups. When inter-network correlations were negative, the curvilinear mixed-effects models revealed that higher Aβ burden was associated with greater memory decline in cognitively normal participants, but when inter-network correlations were positive, there was no association between the magnitude of Aβ burden and memory decline. Opposite patterns were observed in patients with mild cognitive impairment. Combining negative inter-network correlations with Aβ burden can reduce the required sample size by 88% for clinical trials aiming to slow down memory decline.
Conclusions
The direction of inter-network connectivity provides additional information about Aβ burden on the rate of expected memory decline, especially in the preclinical phase. These results may be valuable for optimizing patient selection and decreasing study times to assess efficacy in clinical trials.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer