It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Lymphatic filariasis (LF) is a mosquito-borne parasitic disease and a major cause of disability worldwide. It is one of the neglected tropical diseases identified by the World Health Organization for elimination as a public health problem by 2020. Maps displaying disease distribution are helpful tools to identify high-risk areas and target scarce control resources.
Methods
We used pre-intervention site-level occurrence data from 1192 survey sites collected during extensive mapping surveys by the Nigeria Ministry of Health. Using an ensemble of machine learning modelling algorithms (generalised boosted models and random forest), we mapped the ecological niche of LF at a spatial resolution of 1 km2. By overlaying gridded estimates of population density, we estimated the human population living in LF risk areas on a 100 × 100 m scale.
Results
Our maps demonstrate that there is a heterogeneous distribution of LF risk areas across Nigeria, with large portions of northern Nigeria having more environmentally suitable conditions for the occurrence of LF. Here we estimated that approximately 110 million individuals live in areas at risk of LF transmission.
Conclusions
Machine learning and ensemble modelling are powerful tools to map disease risk and are known to yield more accurate predictive models with less uncertainty than single models. The resulting map provides a geographical framework to target control efforts and assess its potential impacts.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer