Abstract

Glioblastoma multiforme (GBM) is the most common type of primary and malignant tumor occurring in the adult central nervous system. Temozolomide (TMZ) has been considered to be one of the most effective chemotherapeutic agents to prolong the survival of patients with glioblastoma. Many glioma cells develop drug-resistance against TMZ that is mediated by increasing O-6-methylguanine-DNA methyltransferase (MGMT) levels. The expression of connexin 43 was increased in the resistant U251 subline compared with the parental U251 cells. The expression of epithelial–mesenchymal transition (EMT)-associated regulators, including vimentin, N-cadherin, and β-catenin, was reduced in the resistant U251 subline. In addition, the resistant U251 subline exhibited decreased cell migratory activity and monocyte adhesion ability compared to the parental U251 cells. Furthermore, the resistant U251 subline also expressed lower levels of vascular cell adhesion molecule (VCAM)-1 after treatment with recombinant tumor necrosis factor (TNF)-α. These findings suggest differential characteristics in the drug-resistant GBM from the parental glioma cells.

Details

Title
Differential Characterization of Temozolomide-Resistant Human Glioma Cells
Author
Sheng-Wei, Lai; Bor-Ren Huang; Yu-Shu, Liu; Hsiao-Yun, Lin; Chun-Chuan, Chen; Cheng-Fang, Tsai; Lu, Dah-Yuu; Lin, Chingju
First page
127
Publication year
2018
Publication date
2018
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2109451608
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.