It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
DNA barcoding, based on a fragment of cytochrome c oxidase I (COI) mtDNA, is as an effective molecular tool for identification, discovery, and biodiversity assessment for most animals. However, multiple gene markers coupled with more sophisticated analytical approaches may be necessary to clarify species boundaries in cases of cryptic diversity or morphological plasticity. Using 339 moths collected from mountains surrounding Beijing, China, we tested a pipeline consisting of two steps: (1) rapid morphospecies sorting and screening of the investigated fauna with standard COI barcoding approaches; (2) additional analyses with multiple molecular markers for those specimens whose morphospecies and COI barcode grouping were incongruent. In step 1, 124 morphospecies were delimited into 116 barcode units, with 90% of the conflicts being associated with specimens identified to the genus Hypena. In step 2, 55 individuals representing all 12 Hypena morphospecies were analysed using COI, COII, 28S, EF-1a, Wgl sequences or their combinations with the BPP (Bayesian Phylogenetics and Phylogeography) multigene species delimitation method. The multigene analyses supported the delimitation of 5 species, consistent with the COI analysis. We conclude that a two-step barcoding analysis pipeline is able to rapidly characterize insect biodiversity and help to elucidate species boundaries for taxonomic complexes without jeopardizing overall project efficiency by substantially increasing analytical costs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian, Jiangsu, China
2 College of Life Sciences, Capital Normal University, Beijing, China
3 School of Forestry, Experiment Center, Northeast Forestry University, Haerbin, China
4 CSIRO National Research Collections Australia, Hobart, Tasmania, Australia
5 Institute of Zoology, Chinese Academy of Sciences, Beijing, China
6 School of Applied Sciences, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, United Kingdom; Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand