Full Text

Turn on search term navigation

© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study is based on model results from TF HTAP (Task Force on Hemispheric Transport of Air Pollution) phase II, in which a set of source receptor model experiments have been defined, reducing global (and regional) anthropogenic emissions by 20 % in different source regions throughout the globe, with the main focus on the year 2010. All the participating models use the same set of anthropogenic emissions. Comparisons of model results to measurements are shown for selected European surface sites and for ozone sondes, but the main focus here is on the contributions to European ozone levels from different world regions, and how and why these contributions differ depending on the model. We investigate the origins by use of a novel stepwise approach, combining simple tracer calculations and calculations of CO and O3. To highlight the differences, we analyse the vertical transects of the midlatitude effects from the 20 % emission reductions.

The spread in the model results increases from the simple CO tracer to CO and then to ozone as the complexity of the physical and chemical processes involved increase. As a result of non-linear ozone chemistry, the contributions from non-European relative to European sources are larger for ozone compared to the CO and the CO tracer. For annually averaged ozone the contributions from the rest of the world is larger than the effects from European emissions alone, with the largest contributions from North America and eastern Asia. There are also considerable contributions from other nearby regions to the east and from international shipping. The calculated contributions to European annual average ozone from other major source regions relative to all contributions from all major sources (RAIR – Relative Annual Intercontinental Response) have increased from 43 % in HTAP1 to 82 % in HTAP2. This increase is mainly caused by a better definition of Europe, with increased emissions outside of Europe relative to those in Europe, and by including a nearby non-European source for external-to-Europe regions. European contributions to ozone metrics reflecting human health and ecosystem damage, which mostly accumulated in the summer months, are larger than for annual ozone. Whereas ozone from European sources peaks in the summer months, the largest contributions from non-European sources are mostly calculated for the spring months, when ozone production over the polluted continents starts to increase, while at the same time the lifetime of ozone in the free troposphere is relatively long. At the surface, contributions from non-European sources are of similar magnitude for all European subregions considered, defined as TF HTAP receptor regions (north-western, south-western, eastern and south-eastern Europe).

Details

Title
The effects of intercontinental emission sources on European air pollution levels
Author
Jonson, Jan Eiof 1 ; Schulz, Michael 1   VIAFID ORCID Logo  ; Emmons, Louisa 2   VIAFID ORCID Logo  ; Flemming, Johannes 3   VIAFID ORCID Logo  ; Henze, Daven 4 ; Sudo, Kengo 5   VIAFID ORCID Logo  ; Marianne Tronstad Lund 6   VIAFID ORCID Logo  ; Lin, Meiyun 7   VIAFID ORCID Logo  ; Benedictow, Anna 1 ; Koffi, Brigitte 8 ; Dentener, Frank 8 ; Keating, Terry 9   VIAFID ORCID Logo  ; Kivi, Rigel 10   VIAFID ORCID Logo  ; Davila, Yanko 4   VIAFID ORCID Logo 

 Norwegian Meteorological Institute, Oslo, Norway 
 National Center for Atmospheric Research Boulder, Colorado, USA 
 ECMWF (European Centre for Medium Range Forecast), Reading, UK 
 University of Colorado Boulder, Colorado, USA 
 NAGOYA-U, JAMSTEC, NIES, Nagoya, Japan 
 Center for International Climate and Environmental Research (CICERO), Oslo, Norway 
 Program in Atmospheric and Oceanic Sciences of Princeton University and NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA 
 European Commission, Joint Research Centre, Ispra, Italy 
 U.S. Environmental Protection Agency, Washington DC, USA 
10  Finnish Meteorological Institute, Sodankylä, Finland 
Pages
13655-13672
Publication year
2018
Publication date
2018
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2112508041
Copyright
© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.