Full text

Turn on search term navigation

© 2018 Fundova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We tested two methods for non-destructive assessment of wood density of Scots pine standing trees: one based on penetration depth of a steel pin (Pilodyn) and the other on micro-drilling resistance (Resistograph). As a benchmark we used wood density data from x-ray analysis (SilviScan). We assessed in total 622 trees of 175 full-sib families growing in a single progeny test. Pilodyn was applied with bark (PIL) and without bark (PILB). Raw Resistograph drilling profiles (RES) were adjusted (RESTB) in order to eliminate increasing trend caused by needle friction. Individual narrow-sense heritability of benchmark SilviScan density (DEN; 0.46) was most closely approached by that of adjusted RESTB (0.43). Heritabilities were lower for unadjusted RES (0.35) as well as for PIL and PILB (both 0.32). Additive genetic correlations of the benchmark DEN with RES, RESTB, PIL and PILB were 0.89, 0.96, 0.59 and 0.71, respectively. Our results suggest that Resistograph is a more reliable tool than Pilodyn for wood density assessment of Scots pine; however, we highly recommend adjusting Resistograph drilling profiles prior to further analyses.

Details

Title
Non-destructive wood density assessment of Scots pine (Pinus sylvestris L.) using Resistograph and Pilodyn
Author
Fundova, Irena; ⨯ Tomas Funda; Wu, Harry X
First page
e0204518
Section
Research Article
Publication year
2018
Publication date
Sep 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2113593696
Copyright
© 2018 Fundova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.