It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Cultivated peanut (Arachis hypogaea L.) were classified into six botanical varieties according to the morphological characteristics. However, their genetic evolutionary relationships at the genome-wide level were still unclear. A total of 320 peanut accessions, including four of the six botanical varieties, and 37,128 high-quality single nucleotide polymorphisms (SNPs) detected by tunable genotyping-by-sequencing (tGBS) were used to reveal the evolutionary relationships among different botanical varieties and verify the phenotypic classification. A phylogenetic tree indicated that the tested accessions were grouped into three clusters. Almost all of the peanut accessions in cluster C1 belong to var. fastigiata, and clusters C2 and C3 mainly consisted of accessions from var. vulgaris and subsp. hypogaea, respectively. The results of a principal component analysis were consistent with relationships revealed in the phylogenetic tree. Population structure analysis showed that var. fastigiata and var. vulgaris were not separated when K = 2 (subgroup number), whereas they were clearly divided when K = 3. However, var. hypogaea and var. hirsuta could not be distinguished from each other all the way. The nucleotide diversity (π) value implied that var. vulgaris exhibited the highest genetic diversity (0.048), followed by var. fastigiata (0.035) and subsp. hypogaea (0.012), which is consistent with the result of phylogenetic tree. Moreover, the fixation index (FST) value confirmed that var. fastigiata and var. vulgaris were closely related to each other (FST = 0.284), while both of them were clearly distinct from var. hypogaea (FST > 0.4). The present study confirmed the traditional botanical classifications of cultivated peanut at the genome-wide level. Furthermore, the reliable SNPs identified in this study may be a valuable resource for peanut breeders.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Industrial Crops Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
2 Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China