It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Multimode fibers (MMFs) are an example of a highly scattering medium, which scramble the coherent light propagating within them to produce seemingly random patterns. Thus, for applications such as imaging and image projection through an MMF, careful measurements of the relationship between the inputs and outputs of the fiber are required. We show, as a proof of concept, that a deep neural network can learn the input-output relationship in a 0.75 m long MMF. Specifically, we demonstrate that a deep convolutional neural network (CNN) can learn the nonlinear relationships between the amplitude of the speckle pattern (phase information lost) obtained at the output of the fiber and the phase or the amplitude at the input of the fiber. Effectively, the network performs a nonlinear inversion task. We obtained image fidelities (correlations) as high as ~98% for reconstruction and ~94% for image projection in the MMF compared with the image recovered using the full knowledge of the system transmission characterized with the complex measured matrix. We further show that the network can be trained for transfer learning, i.e., it can transmit images through the MMF, which belongs to another class not used for training/testing.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Ecole Polytechnique Fédérale de Lausanne, Laboratory of Applied Photonics Devices, Lausanne, Switzerland
2 Ecole Polytechnique Fédérale de Lausanne, Laboratory of Optics, Lausanne, Switzerland