Abstract

Based on increasing evidence suggesting that MS pathology involves alterations in bioactive lipid metabolism, the present analysis was aimed at generating a complex serum lipid-biomarker. Using unsupervised machine-learning, implemented as emergent self-organizing maps of neuronal networks, swarm intelligence and Minimum Curvilinear Embedding, a cluster structure was found in the input data space comprising serum concentrations of d = 43 different lipid-markers of various classes. The structure coincided largely with the clinical diagnosis, indicating that the data provide a basis for the creation of a biomarker (classifier). This was subsequently assessed using supervised machine-learning, implemented as random forests and computed ABC analysis-based feature selection. Bayesian statistics-based biomarker creation was used to map the diagnostic classes of either MS patients (n = 102) or healthy subjects (n = 301). Eight lipid-markers passed the feature selection and comprised GluCerC16, LPA20:4, HETE15S, LacCerC24:1, C16Sphinganine, biopterin and the endocannabinoids PEA and OEA. A complex classifier or biomarker was developed that predicted MS at a sensitivity, specificity and accuracy of approximately 95% in training and test data sets, respectively. The present successful application of serum lipid marker concentrations to MS data is encouraging for further efforts to establish an MS biomarker based on serum lipidomics.

Details

Title
Machine-learning based lipid mediator serum concentration patterns allow identification of multiple sclerosis patients with high accuracy
Author
Lötsch, Jörn 1   VIAFID ORCID Logo  ; Schiffmann, Susanne 2 ; Schmitz, Katja 3 ; Brunkhorst, Robert 4 ; Lerch, Florian 5 ; Ferreiros, Nerea 3 ; Wicker, Sabine 6 ; Tegeder, Irmgard 3 ; Geisslinger, Gerd 1 ; Ultsch, Alfred 5 

 Institute of Clinical Pharmacology, Goethe-University, Frankfurt am Main, Germany; Fraunhofer Institute of Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany 
 Fraunhofer Institute of Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany 
 Institute of Clinical Pharmacology, Goethe-University, Frankfurt am Main, Germany 
 Department of Neurology, Goethe-University Hospital, Frankfurt am Main, Germany 
 DataBionics Research Group, University of Marburg, Marburg, Germany 
 Occupational Health Service, University Hospital Frankfurt, Frankfurt am Main, Germany 
Pages
1-16
Publication year
2018
Publication date
Oct 2018
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2116607511
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.