It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
It is critical to understand how variations in chemical composition in surface seawater (SSW) affect the chemistry of marine atmospheric aerosols. We investigated the sea-to-air transfer of dissolved organic carbon (DOC) via cruise measurements of both ambient aerosols and SSW in the Oyashio and its coastal regions, the western subarctic Pacific during early spring. Sea spray aerosols (SSAs) were selected based on the stable carbon isotope ratio of water-soluble organic carbon (WSOC) (δ13CWSOC) and concentrations of glucose as a molecular tracer in marine aerosols together with local surface wind speed data. For both SSA and SSW samples, excitation-emission matrices were obtained to examine the transfer of fluorescent organic material. We found that the ratios of fluorescence intensity of humic-like and protein-like substances in the submicrometer SSAs were significantly larger than those in the bulk SSW (~63%). This ratio was also larger for the supermicrometer SSAs than for the SSW. The results suggest significant decomposition of protein-like DOC on a timescale of <12–24 h and/or preferential production of humic-like substances in the atmospheric aerosols regardless of the particle size. This study provides unique insights into the complex transfer of DOC from the ocean surface to the atmosphere.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
2 Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
3 Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan; Now at School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
4 Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
5 Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan; Now at Institute for Space–Earth Environmental Research, Nagoya University, Nagoya, Japan