Full text

Turn on search term navigation

Copyright © 2018 Ching-Hsiu Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Cu2O has been deposited on quartz substrates by reactive ion beam sputter deposition. Experimental results show that by controlling argon/oxygen flow rates, both n-type and p-type Cu2O samples can be achieved. The bandgap of n-type and p-type Cu2O were found to be 2.3 and 2.5 eV, respectively. The variable temperature photoluminescence study shows that the n-type conductivity is due to the presence of oxygen vacancy defects. Both samples show stable photocurrent response that photocurrent change of both samples after 1,000 seconds of operation is less than 5%. Carrier densities were found to be 1.90 × 1018 and 2.24 × 1016 cm−3 for n-type and p-type Cu2O, respectively. Fermi energies have been calculated, and simplified band structures are constructed. Our results show that Cu2O is a plausible candidate for both photoanodic and photocathodic electrode materials in photoelectrochemical application.

Details

Title
Stable Cu2O Photoelectrodes by Reactive Ion Beam Sputter Deposition
Author
Chen, Ching-Hsiu; Assamen, Ayalew Ejigu; Liang-Chiun Chao  VIAFID ORCID Logo 
Editor
José A Correia
Publication year
2018
Publication date
2018
Publisher
John Wiley & Sons, Inc.
ISSN
16878434
e-ISSN
16878442
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2116805399
Copyright
Copyright © 2018 Ching-Hsiu Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/