It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Intratracheal delivery of stem cells into injured or diseased lungs can provide a variety of therapeutic and immunomodulatory effects for the treatment of acute lung injury and chronic lung disease. While the efficacy of this approach depends on delivering the proper cell dosage into the target region of the airway, tracking and analysis of the cells have been challenging, largely due to the limited understanding of cell transport and lack of suitable cell monitoring techniques. We report on the transport and deposition of intratracheally delivered stem cells as well as strategies to modulate the number of cells (e.g., dose), topographic distribution, and region-specific delivery in small (rodent) and large (porcine and human) lungs. We also developed minimally invasive imaging techniques for real-time monitoring of intratracheally delivered cells. We propose that this approach can facilitate the implementation of patient-specific cells and lead to enhanced clinical outcomes in the treatment of lung disease with cell-based therapies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Biomedical Engineering, Columbia University, New York, NY, USA
2 Department of Surgery, Columbia University, New York, NY, USA
3 Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Pediatrics, Columbia University, New York, NY, USA
4 Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Medicine, Columbia University, New York, NY, USA