Full text

Turn on search term navigation

© 2018 Mugele et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Competitive runners will occasionally undergo exercise in a laboratory setting to obtain predictive and prescriptive information regarding their performance. The present research aimed to assess whether the physiological demands of lab-based treadmill running (TM) can simulate that of over-ground (OG) running using a commonly used protocol. Fifteen healthy volunteers with a weekly mileage of ≥ 20 km over the past 6 months and treadmill experience participated in this cross-sectional study. Two stepwise incremental tests until volitional exhaustion was performed in a fixed order within one week in an Outpatient Clinic research laboratory and outdoor athletic track. Running velocity (IATspeed), heart rate (IATHR) and lactate concentration at the individual anaerobic threshold (IATbLa) were primary endpoints. Additionally, distance covered (DIST), maximal heart rate (HRmax), maximal blood lactate concentration (bLamax) and rate of perceived exertion (RPE) at IATspeed were analyzed. IATspeed, DIST and HRmax were not statistically significantly different between conditions, whereas bLamax and RPE at IATspeed showed statistical significance (p < 0.05). Apart from RPE at IATspeed, IATspeed, DIST, HRmax and bLamax strongly correlate between conditions (r = 0.815–0.988). High reliability between conditions provides strong evidence to suggest that running on a treadmill are physiologically comparable to that of OG and that training recommendations and be made with assurance.

Details

Title
Accuracy of training recommendations based on a treadmill multistage incremental exercise test
Author
Mugele, Hendrik; ⨯ Ashley Plummer; ⨯ Omar Baritello; Towe, Maggie; Brecht, Pia; Mayer, Frank
First page
e0204696
Section
Research Article
Publication year
2018
Publication date
Oct 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2118388376
Copyright
© 2018 Mugele et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.