It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper contributes to the well-known challenge of active user participation in demand side management (DSM). In DSM, there is a need for modern pricing mechanisms that will be able to effectively incentivize selfishly behaving users in modifying their energy consumption pattern towards system-level goals like energy efficiency. Three generally desired properties of DSM algorithms are: user satisfaction, energy cost minimization and fairness. In this paper, a personalized–real time pricing (P-RTP) mechanism design framework is proposed that fairly allocates the energy cost reduction only to the users that provoke it. Thus, the proposed mechanism achieves significant reduction of the energy cost without sacrificing at all the welfare (user satisfaction) of electricity consumers. The business model that the proposed mechanism envisages is highly competitive flexibility market environments as well as energy cooperatives.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Electrical and Computer Engineering, Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece
2 Department of Electrical and Computer Engineering, Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece; Electrical and Computer Systems Engineering, Monash University, Melbourne, Australia