It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
There is a growing need for developing machine learning applications. However, implementation of the machine learning algorithm consumes a huge number of transistors or memory devices on-chip. Developing a machine learning capability in a single device has so far remained elusive. Here, we build a Markov chain algorithm in a single device based on the native oxide of two dimensional multilayer tin selenide. After probing the electrical transport in vertical tin oxide/tin selenide/tin oxide heterostructures, two sudden current jumps are observed during the set and reset processes. Furthermore, five filament states are observed. After classifying five filament states into three states of the Markov chain, the probabilities between each states show convergence values after multiple testing cycles. Based on this device, we demo a fixed-probability random number generator within 5% error rate. This work sheds light on a single device as one hardware core with Markov chain algorithm.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Institute of Microelectronics, Tsinghua University, Beijing, China; Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
2 School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan