Abstract
We present a new tool for modelling time-lapse magnetotelluric (MT) data, an emerging technique for monitoring changes in subsurface electrical resistivity. Time-lapse MT data have been acquired in various settings, including sites of hydraulic fracturing, dewatering and sequestration. It has been shown in other geophysical techniques that the most effective way to model time-lapse data is with simultaneous inversion, which uses information from all time-steps to produce models with higher accuracy and fewer artefacts. We introduce this method to model time-lapse 1D MT data. As with a standard MT inversion, our routine penalises spatial roughness at each time-step, however we also introduce temporal regularisation. The inversion is simple to apply, requiring only the ratio between regularisation parameters and the desired level of misfit from the user. The algorithm is tested on both synthetic data, and a case study. We find that in the synthetic example our inversion successfully retrieves the main characteristics of the test model and introduces minimal artefacts, even in the presence of significant noise. We also test the effect of changing the ratio of regularisation parameters. In the case study, we produce an easily interpretable model that compares favourably with previous inversions of the synthetic data. We conclude that time-lapse modelling of 1D MT data can be a valuable tool for imaging subsurface change.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Physical Sciences, University of Adelaide, Adelaide, Australia




