It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Antimicrobial resistance is a public-health threat and antimicrobial consumption is the main contributor. The ten-valent pneumococcal conjugate vaccine (PHiD-CV10) was introduced into the Icelandic vaccination program in 2011.
The aim was to estimate the vaccine impact of PHiD-CV10 on outpatient antimicrobial prescriptions in children.
Methods
Eleven Icelandic birth-cohorts (2005–2015) were followed from birth until three years of age or to the end of the study period (December 31, 2016). Birth-cohorts were grouped as vaccine non-eligible (VNEC, 2005–2010) or vaccine eligible (VEC, 2011–2015). Data on primary care visits for respiratory infections and antimicrobial prescriptions were extracted from two national registers. Using national identification numbers, prescriptions were linked to physician visits if filled within three days of the visit. Incidence rates and incidence rate ratios between VNEC and VEC were calculated. An Andersen-Gill model was used to model the individual level data, accounting for repeated events and censoring. Vaccine impact was calculated as (1 – Hazard Ratio) × 100%.
Results
Included were 53,510 children who contributed 151,992 person-years of follow-up and filled 231,660 antimicrobial prescriptions. The incidence rate was significantly lower in the VEC compared to the VNEC, 144.5 and 157.2 prescriptions per 100 person-years respectively (IRR 0.92, 95%CI 0.91–0.93). Children in VEC were more likely to have filled zero (IRR 1.16 (95%CI 1.10–1.23) and 1–4 (IRR 1.08 95%CI 1.06–1.11) prescriptions compared to children in VNEC. The vaccine impact of PHiD-CV10 against all-cause antimicrobial prescriptions was 5.8% (95%CI 1.6–9.8%).When only considering acute otitis media-associated prescriptions, the vaccine impact was 21.8% (95%CI 11.5–30.9%).
Conclusion
The introduction of PHiD-CV10 lead to reduced antimicrobial use in children, mainly by reducing acute otitis media episodes. This intervention therefore reduces both disease burden and could slow the spread of antimicrobial resistance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer